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CP 231, B-1050, Bruxelles, Belgium
bInstitute for theoretical physics, K.U. Leuven,

Celestijnenlaan 200D, B-3001 Leuven, Belgium
cInstitute for Theoretical Physics, Utrecht University,

Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
dDepartamento de Fisica de Particulas, Universidade de Santiago de Compostela, and

Instituto Galego de Fisica de Altas Energias (IGFAE),

E-15782, Santiago de Compostela, Spain

E-mail: fbigazzi@ulb.ac.be, Aldo.Cotrone@fys.kuleuven.be,

A.ParedesGalan@uu.nl, alfonso@fpaxp1.usc.es

Abstract: We present a fully backreacted D3-D7 supergravity solution dual to the

Klebanov-Strassler cascading gauge theory coupled to a large number of massive dynamical
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dynamically generated scale. The solution is always regular at the origin of the radial co-

ordinate and as such it can be suitably employed to explore the rich IR physics of the dual
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of chromoelectric charges induced by the dynamical flavors, the flux tube breaking and

the mass spectrum of the first mesonic excitations. Moreover, we discuss the occurrence of

quantum phase transitions in the connected part of the static quark-antiquark potential.

Depending on the ratio of certain parameters, like the flavor mass, with respect to some

critical values, we find a discontinuous (first order) or smooth transition from a Coulomb-

like to a linear phase. We evaluate the related critical exponents finding that they take

classical mean-field values and argue that this is a universal feature of analogous first or-

der transitions occurring in the static potential for planar gauge theories having a dual

supergravity description.
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1 Introduction

The quarks in QCD can be distinguished between light (u, d, s) and heavy (c, b, t), depend-

ing on their mass being smaller or (much) larger than the scale ΛIR dynamically generated

via dimensional transmutation. The main vacuum polarization effects related to the fla-

vors are due to the three light quarks, while the others, which can be mainly considered as

“probes” of the theory, can be neglected in the path integral with a good approximation.

Nowadays, the only systematic, first-principles-based, non-perturbative approach to

low energy QCD is provided by the study of extrapolations to the continuum of numerical

simulations of the theory on a Euclidean space-time lattice of finite volume [1]. On the

lattice it is practically extremely hard to account for the vacuum polarization effects due

to the light quarks and so many results are obtained using an approximation where they

are treated as probes. This is the so-called “quenched” approximation. There are certainly

indications about the possibility of overcoming this limit in the future and some partial

results towards “unquenching” the lattice are known (see for example [2]).

In the meantime we have to take in mind that most of what we know from the lattice

is about quenched QCD. This theory is strictly confining, like pure Yang-Mills, while

the same is not true for real QCD: due to the presence of the dynamical (light) quarks,

an external quark-antiquark pair Q̄Q will not experience an indefinitely linear potential

at large distances. Instead, since a q̄q pair of dynamical flavors can be popped out of

the vacuum, the initial Q̄Q state will decay into a pair of heavy-light mesons Q̄q + q̄Q

for distances larger than a certain “screening length” (at which the flux tube becomes

sufficiently energetic for the decay to happen).

Remarkably, the string/gauge theory correspondence, which aims to be a complemen-

tary approach towards explaining the non-perturbative dynamics of QCD, offers a set of

simple tools to analyze particular unquenched gauge theories in certain regimes. This is

certainly not an ideal setting at the moment, since the present computational methods

allow us to give a string dual description to theories which are at most (supersymmetric)

extensions of planar (Nc → ∞) QCD, where the phenomenologically interesting sector is

coupled to spurious matter or has some higher dimensional UV completion. Nevertheless,

the string approach can give valuable insights into many features of strongly coupled gauge

theories, in regimes inaccessible by other methods.

In this paper we present an exact (and mostly analytic) fully backreacted D3-D7 su-

pergravity solution dual to the 4d Klebanov-Strassler (KS) cascading gauge theory [3],

coupled to a large number of dynamical fundamental matter fields which are massive and

non-chiral (relevant related studies are in refs. [4]–[24]). The unflavored theory is known

to be confining and to share many notable properties with 4d N = 1 SYM. The flavored

model flows in the IR to a SQCD-like theory. The dual supergravity solution allows one

to consider, without limitations, either light (m < ΛIR) or heavy (m > ΛIR) dynamical

– 1 –
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flavors. Remarkably, the solution is always regular at the origin of the radial coordinates

and as such it is a very promising tool to explore the IR dynamics of the dual gauge theory.

With this aim, we begin to explore some relevant physical observables, concentrating

in particular on their dependence on the flavor parameters. We first focus on the static

quark-antiquark potential and study its behavior as a function of the number Nf and the

masses of the flavors, keeping fixed different relevant field theory scales. We show how

the solution accounts for the string breaking and screening effects due to the dynamical

flavors. In particular it enables us to provide a first qualitative study of the behavior of

the screening lengths as functions of the flavor parameters. We also start up an analysis

of the mesonic spectrum, by considering fluctuations of the worldvolume gauge field of a

κ-symmetric D7-brane probe corresponding to massless flavors. We show how it is possible

to study quantitatively how the spectrum varies w.r.t. to the number of sea flavors and

their masses. Previous studies along these lines in models with flavor backreaction can be

found in [5, 8, 17, 18, 22, 24].

Finally, we analyze the interesting phenomenon of the occurrence of first order quantum

phase transitions in the “connected” part1 of the static quark-antiquark potential. These

transitions are discontinuous changes in the slope of the potential and actually occur in

several models with and without flavors when at least two separate physical scales are

present [17, 18, 21, 24–28]. For the case at hand the potential passes discontinuously from

a Coulomb-like to a linear behavior. The transition disappears, i.e. the potential becomes

smooth, for flavor masses above a certain critical value, or by varying some other mass

parameters in the theory. In the present setup it is possible to evaluate the related critical

exponents and to show that they take the classical mean-field values. We argue, by means of

catastrophe theory, that this is a universal feature of every first order transition discovered,

in different (also unflavored) models, in the static potential holographically evaluated by

means of string theory.

1.1 Techniques and structure of the paper

The addition of fundamental matter to the KS model is realized, following the general

suggestion of [29], by means of space-time filling D7-branes which are holomorphically

embedded (so as to preserve N = 1 supersymmetry) and wrapped on non-compact sub-

manifolds of the transverse space [30]. Just as in lattice gauge theory, the task of adding

flavors in the stringy setup becomes computationally simpler if the vacuum polarization

effects due to the fundamental matter fields are neglected. The quenched approximation

is realized by neglecting the backreaction of the flavor D-branes on the background and

treating them as external probes.

In order to go beyond the quenched approximation we use a simple technique which

was introduced in [6, 7]: we homogeneously smear the flavor branes along their transverse

directions. This operation is sensible only if the number Nf of such branes is very large, as

happens in the Veneziano regime (where Nf , Nc → ∞ with Nf/Nc fixed). In the smeared

1In the dual picture this refers to the macroscopic open string describing the metastable Q̄Q state when

the mixing with the final heavy-light mesons Q̄q + q̄Q, i.e. the “disconnected” string configurations, is

artificially turned off.

– 2 –
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setups the flavor symmetry group is generically broken to a product of abelian ones, but

this limitation does not spoil many features of physical interest in the related models.

When the flavors are massless the related smeared branes reach the origin of the

transverse space. At this point the flavor symmetry is generically enhanced since the

flavor branes overlap. In the known cases this is accompanied by the presence of a (good)

singularity in the dual string solutions. This kind of singularity can be avoided in the

massive case, where the smeared branes generically extend up to a certain finite distance

from the origin along the radial direction and there is no special point where the flavor

symmetry is fully enhanced. For this reason it is extremely interesting to focus on smeared-

flavor-brane setups where the dual gauge theories are coupled to massive dynamical flavors.

Using the smearing technique, the addition of massless dynamical flavors to the KS

gauge theory, giving a solution with a (good) singularity in the IR, was considered in [11].

An approximate solution corresponding to the inclusion of massive dynamical flavors to

the Chamseddine-Volkov-Maldacena-Nunez confining theory [31], was given in [17] and

was regular in the IR by construction. In order to build up an exact solution accounting

for massive flavors in the KS case, we have to evaluate the density distribution of the

smeared flavor D7-branes. This depends on a function of the radial variable, Nf (τ), which

accounts for the effective number of flavor degrees of freedom at a given energy scale.

Remarkably, despite the complicated setting, we are able to find the explicit expression of

Nf (τ). The precise knowledge of this function enables us to write up the fully backreacted

D3-D7 solution. Previous calculations of the analogous function and the derivation of the

corresponding backgrounds in the singular conifold case were performed in [18, 22].

This paper is organized as follows. In section 2 we derive the function Nf (τ), the

main formulas being (2.14), (2.15), (2.16). In section 3 we calculate the full supergravity

solution dual to the KS model with dynamical massive flavors (the solution can be found in

section 3.3). In section 4 we study the static quark-antiquark potential and the screening

lengths. In section 5 we analyze the first order quantum phase transitions in the static

quark-antiquark potential. In section 6 we focus on some mesonic mass spectra. We end

up in section 7 with some concluding remarks and a sketch of possible future research lines.

The paper includes various appendices where many details of the calculations and validity

checks are provided.

2 Massive non-chiral flavors and smeared D7-branes on the deformed

conifold

The deformed conifold is a regular six dimensional non compact manifold defined by the

equation z1 z2 − z3 z4 = ǫ2 in C
4. When the complex deformation parameter ǫ is turned

off, it reduces to the singular conifold, which is invariant under complex rescaling of the

zi, has SU(2) × SU(2) ×U(1) isometry and S2 × S3 topology. The deformation parameter

breaks the scale invariance, produces a blown-up S3 at the apex of the conifold and breaks

the U(1) isometry to Z2.

The low energy dynamics of N regular and M fractional D3-branes on the deformed

conifold is described by a cascading N = 1 4d gauge theory with gauge group SU(N +

– 3 –
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M)×SU(N) and bifundamental matter fields A,B transforming as SU(2)×SU(2) doublets

and interacting with a quartic superpotential WKW = ǫijǫklAiBkAjBl. The KS solution [3]

is relevant for the N = nM case, where n is an integer. The related theory develops a

Seiberg duality cascade which stops after n− 1 steps when the gauge group is reduced to

SU(2M)×SU(M). The regular KS solution precisely accounts for the physics of an A↔ B-

symmetric point in the baryonic branch of the latter theory, which exhibits confinement

and U(1)R → Z2N → Z2 breaking due to the formation of a gluino condensate 〈λλ〉 ∼ Λ3
IR.

The complex parameter ǫ is the geometric counterpart of this condensate.

Let us consider the addition of fundamental degrees of freedom to the theory. This

can be realized by means of suitably chosen D7-branes. A relevant example is given by

D7-branes wrapping the holomorphic 4-cycle defined by an equation of the form

z1 − z2 = 2µ̂ . (2.1)

It was shown in [30] that this embedding is κ-symmetric and hence preserves the four

supercharges of the deformed conifold theory.

A D7-brane wrapping the 4-cycle defined above is conjectured to add a massless (if

µ̂ = 0) or massive (anti) fundamental flavor to a node of the KS model. The resulting

gauge theory is “non-chiral” because the flavor mass terms do not break the classical flavor

symmetry of the massless theory. The related perturbative superpotential is, just as in the

singular conifold case [32],

W = WKW + ĥ1 q̃1(A1B1 −A2B2)q1 + ĥ2 q̃2(B1A1 −B2A2)q2 + ki (q̃iqi)
2 +m (q̃iqi) , (2.2)

where we have considered a Z2-invariant setup with two stacks of D7-branes adding the

same number of fundamental degrees of freedom (with same masses) to both nodes. Thus

the complex mass parameter m in W is mapped to the geometrical parameter µ̂.

In the singular conifold case the massive embedding z1 − z2 = 2µ̂ explicitly breaks

the scale invariance and the U(1) isometry of the background geometry. This is related to

the explicit breaking of conformal invariance and U(1)R symmetry due to the mass terms

in the dual gauge theory. The embedding equation also breaks part of the non abelian

symmetry group of the conifold to a diagonal SU(2) subgroup.

2.1 The D7-brane profile

The metric of the deformed conifold is usually written as

ds26 =

1

2
ǫ4/3K(τ)

[

1

3K3(τ)
(dτ2+ (g5)2) + cosh2

(τ

2

)

((g3)2+ (g4)2) + sinh2
(τ

2

)

((g1)2+ (g2)2)

]

,

(2.3)

where

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh(τ)
, (2.4)

– 4 –
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and

g1 =
− sin θ1 dϕ1 − cosψ sin θ2 dϕ2 + sinψ dθ2√

2
,

g2 =
dθ1 − sinψ sin θ2 dϕ2 − cosψ dθ2√

2
,

g3 =
− sin θ1 dϕ1 + cosψ sin θ2 dϕ2 − sinψ dθ2√

2
,

g4 =
dθ1 + sinψ sin θ2 dϕ2 + cosψ dθ2√

2
,

g5 = dψ + cos θ1 dϕ1 + cos θ2 dϕ2 . (2.5)

The range of the angles is ψ ∈ [0, 4π), ϕi ∈ [0, 2π), θi ∈ [0, π], while τ ∈ [0,∞). For

τ → ∞ the metric asymptotes the singular conifold one. In terms of these coordinates the

non-chiral embedding z1 − z2 = 2µ̂ can be written as

Θ1 sinh
τ

2
− iΘ2 cosh

τ

2
=
µ̂

ǫ
, (2.6)

where

Θ1 = sin
θ1
2

sin
θ2
2

cos
ϕ1 + ϕ2 − ψ

2
− cos

θ1
2

cos
θ2
2

cos
ϕ1 + ϕ2 + ψ

2
,

Θ2 = sin
θ1
2

sin
θ2
2

sin
ϕ1 + ϕ2 − ψ

2
+ cos

θ1
2

cos
θ2
2

sin
ϕ1 + ϕ2 + ψ

2
, (2.7)

and |Θi| ≤ 1. From these equations it follows that the profile of the D7-branes has a non

trivial radial dependence: the branes extend all along the radial direction up to a minimum

distance τmin which depends on the relative phase of the µ̂ and ǫ parameters.

If µ̂/ǫ is purely imaginary (resp. real), the embedding equations imply Θ1 = 0 (resp.

Θ2 = 0) and τmin = τa = 2arc cosh(|µ̂|/|ǫ|) (resp. τmin = τb = 2arc sinh(|µ̂|/|ǫ|)). For

generic phases τa < τmin < τb. Notice that in the “completely misaligned” case where µ̂/ǫ

is purely imaginary, τmin = 0 - i.e. the D7-brane reaches the tip of the deformed conifold -

if |µ̂| < |ǫ|.
Let us now define τq ≡ τa as the absolute minimal value of τmin. Related to this, one

can introduce a parametermq, the absolute minimum flavor “constituent mass”,2 defined as

the energy of an hypothetical straight string stretched along the radial direction from τ = 0

to τq. If |µ̂| < |ǫ|, then mq = 0. As discussed above, the dimensional parameters µ̂ and ǫ

can be related to the bare flavor mass m (see eq. (2.2)) and the fundamental scale ΛIR of

the dual gauge theory. Thus the relation |µ̂| < |ǫ| can be interpreted as m < ΛIR. Though

at the level of the “constituent mass” we do not see differences between the |µ̂| < |ǫ| and

the µ̂ = 0 cases, we will see that the non zero bare mass parameter influences the density

distribution of the flavor branes also when m < ΛIR. This will thus mark a difference with

the m = 0 setup.

2This is how the mq parameter is usually called in the literature. In the present context we adopt the

same name with an abuse of language.

– 5 –
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2.2 The density distribution for smeared D7-branes

Acting with an SO(4) ∼ SU(2) × SU(2) rotation on the embedding equation z1 − z2 = 2µ̂,

we obtain the generalized embedding equation

p̄z1 − pz2 + q̄z3 + qz4 = 2µ̂ ≡ 2|µ̂|eiβ , (2.8)

where p, q span a unit 3-sphere

p = cos
θ

2
ei(

χ+φ
2

) , q = sin
θ

2
ei(

χ−φ
2

) , (2.9)

and χ ∈ [0, 4π), φ ∈ [0, 2π), θ ∈ [0, π], β ∈ [0, 2π].

Let us now consider a maximal symmetric smeared distribution of Nf ≫ 1 D7-branes

generally embedded as above. By “maximal” we mean that the distribution will not only

be invariant under the SU(2)×SU(2) isometry of the deformed conifold, but also under the

symmetry U(1)ψ , under shifts of the ψ angle, which is broken (to a Z2 subgroup) by the

deformed conifold geometry. We will thus homogeneously distribute the D7-branes along

χ, φ, θ as well as along the phase of the mass term β. We will instead take the modulus

|µ̂| (hence the modulus of the flavor mass parameter in the dual field theory) to be fixed.

Smearing along β will cause different D7-branes to reach different minimal distances τmin

from the origin. The whole distribution will end up at the absolute minimal distance τq.

The density distribution Ω of the smeared D7-branes is given by

Ω =

∫

σθ,φ,χ,β (δ(f1)δ(f2)df1 ∧ df2) dθ dφ dχ dβ , (2.10)

where we have introduced the properly normalized density function σθ,φ,χ,β = Nf sin θ/32π3

and f1 = 0, f2 = 0 are the two real constraints implied by the complex equation (2.8) (see

appendix A).

The symmetries strongly constrain the form of Ω. As was shown in [9], the only

possibility for an exact two-form preserving SU(2)× SU(2)×U(1)ψ ×Z2 is, in the present

setup,

Ω =
Nf (τ)

4π
(sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2) −

Ṅf (τ)

4π
dτ ∧ (dψ + cos θ1dϕ1 + cos θ2dϕ2) ,

(2.11)

where the the dot means derivative w.r.t. τ . The function Nf (τ) counts the effective

number of dynamical flavors at a given energy scale, holographically related to τ . It

crucially depends on the particular kind of smeared embedding. Referring to appendix A

for the details of the non trivial and very instructive calculation and defining

x ≡ cosh τ, µ ≡ |µ̂|
|ǫ| , (2.12)

we find that in the present setup the function Nf (x) is the solution of the first order

equation

dNf (x)

dx
=
Nfµ

2

2π

Θ[x− 2µ2 + 1]

(x2 − 1)2

[

I1(x) −
4

µ2
Θ[2µ2 + 1 − x] I2(x)

]

, (2.13)

– 6 –
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where Θ[y] is the Heaviside step function and

I1 = 4π(1 + x2) ,

I2 = x
√

(1+ 2µ2 − x)(1− 2µ2 + x)(x2 − 1) + 2µ2(1+ x2) arctan

[
√

(1+ x)(1+ 2µ2 − x)

(x− 1)(1− 2µ2 + x)

]

.

In the massless case µ = 0 we have Nf (τ) = const = Nf [11]. Moreover, for x ≤ 2µ2 − 1

we have Nf (x) = const = 0.

Let us now split (2.13) into two regions. In region I, x > 2µ2 + 1 (i.e. τ > τb), we find

the following simple solution

N
(I)
f (x) = Nf

[

1 − 2µ2 x

x2 − 1

]

, (2.14)

where the integration constant is fixed by consistency so that Nf (∞) = Nf . Notice that in

the large τ limit (with |ǫ|2eτ ∼ r3 = e3ρ), this function asymptotes to the expression found

in [22], for the flavored version of the singular conifold Klebanov-Witten (KW) model [33].

In region II, 2µ2−1 < x < 2µ2 +1 (i.e. τa < τ < τb), we have a complicated expression

in terms of Elliptic integrals of the first and third kind (F [a | b] and Π[a; b | c] respectively)

N
(II)
f (x) = Nf

[

1 − 2µ2 x

x2 − 1
− 4µ2

π

(

A1(x, µ
2) +A2(x, µ

2) −A2(2µ
2 + 1, µ2)

)

]

, (2.15)

where

A1(x, µ
2) =− 1

4µ2

√

(x+ 1− 2µ2)(2µ2 + 1− x)

(x+ 1)(x − 1)
− x

x2 − 1
arctan

[
√

(1+ x)(1 + 2µ2 − x)

(x−1)(x+ 1 − 2µ2)

]

,

A2(x, µ
2) =− i

2µ4
(µ2 − 1)F

[

arcsin

(
√

µ2(1 + x)

(1 + µ2)(x− 1)

)

| µ
4 − 1

µ4

]

+

− i

µ4
Π

[

µ2 + 1

µ2
; arcsin

(
√

µ2(1 + x)

(1 + µ2)(x− 1)

)

| µ
4 − 1

µ4

]

. (2.16)

In (2.15) we have fixed the integration constant by imposing continuity at x = 2µ2 +1, i.e.

N
(I)
f (x = 2µ2+1) = N

(II)
f (x = 2µ2+1). This condition is satisfied since A1(2µ

2+1, µ2) = 0.

If µ > 1 and so xmin = 2µ2 − 1 > 1, we also have that Nf (x) is vanishing for x < xmin.

Let us check continuity at x = 2µ2 − 1. First, notice that

A1(2µ
2 − 1, µ2) = −π

8

(2µ2 − 1)

µ2(µ2 − 1)
, (2.17)

so that the above mentioned continuity condition amounts to having

1 − 4µ2

π

[

A2(2µ
2 − 1, µ2) −A2(2µ

2 + 1, µ2)
]

= 0 . (2.18)

We have checked numerically that this condition is indeed satisfied and, more precisely,

that

1 − 4µ2

π

[

A2(2µ
2 − 1, µ2) −A2(2µ

2 + 1, µ2)
]

= −2Θ[1 − µ] , (2.19)

– 7 –
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Figure 1. Plots of Nf (τ) for two examples with µ > 1 and µ < 1.

which thus vanishes for µ > 1.

Relevant plots of Nf (τ) can be found in figure 1. For µ > 1 the shape of Nf (τ)

resembles that of a “smoothed-out” Heaviside step function Nf (τ) ∼ NfΘ[τ − τq]. In

fact, as we have anticipated, the function Nf (τ) counts the effective number of flavor

degrees of freedom at a given energy scale. At energies smaller than the flavor mass, the

fundamental fields can be integrated out and the theory resembles the unflavored one. At

higher energies the masses can be neglected and the theory looks like the massless-flavored

one (for which Nf (τ) = Nf ). In other contexts where the density distribution of the

flavor branes is difficult to evaluate, the Heaviside step function can be fruitfully used to

construct approximate solutions. This is what was done in [17] for the massive-flavored

CVMN solution.

Let us stress that also when µ < 1 and so m < ΛIR, mq = 0, there is a non trivial

density distribution of branes. This marks a difference with the m = 0 case studied in [11].

Of course approximating Nf (τ) with an Heaviside step function NfΘ[τ−τq] in this massless

case would simply replace our solution with the massless one for every τ .

3 The backreacted KS solution with massive flavors

In this section we present the new supergravity solutions accounting for the full backre-

action of fractional and regular color D3-branes, as well as of smeared flavor D7-branes

on the deformed conifold. The solutions follow from an action which is the sum of the

bulk type IIB supergravity and the flavor brane actions. Following a suggestion in [34]

the action for the D7-branes is just taken as the sum of the Dirac-Born-Infeld (DBI) and

Wess-Zumino (WZ) terms. This is actually an approximation which is sensible only if the

effective coupling gsNf is small. This is the case in localized setups if Nf ≪ Nc or in the

smeared setups (where Nf can be of the same order of Nc) due to the effective suppression

of the coupling by the large transverse volume [18, 19].
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3.1 The ansatz

In order to present the ansatz for the full background, let us first introduce the one-forms

σi and ωi (i = 1, 2, 3) as follows

σ1 = dθ1 , σ2 = sin θ1 dϕ1 , σ3 = cos θ1 dϕ1 ,

ω1 = sinψ sin θ2 dϕ2 + cosψ dθ2 , ω2 = − cosψ sin θ2 dϕ2 + sinψ dθ2 ,

ω3 = dψ + cos θ2 dϕ2 . (3.1)

Here the angles are the same as in the deformed conifold.

The Einstein frame metric ansatz has the same warped form as in the massless case [11]

ds2 = h−1/2(τ) dxµ dx
µ + h1/2(τ) ds26 ,

ds26 =
1

9
e2G3(τ)(dτ2 + g2

5) + e2G2(τ)(1 − g(τ))(g2
1 + g2

2) + e2G2(τ)(1 + g(τ))(g2
3 + g2

4) ,

where dx2
1,3 denotes the four-dimensional Minkowski metric and Gi = Gi(τ) (i = 1, 2, 3),

g = g(τ) and h(τ) are five unknown radial functions. Quite nicely, the embedding equation

expressed in terms the “deformed conifold τ variable” looks the same in terms of the

“backreacted ansatz τ variable”. See appendix B for details.

As for the dilaton and the forms we will adopt the same ansatz as in [11], modulo

the substitution of Nf with the function Nf (τ) evaluated in the previous section. In units

gs = 1 we have

F5 = dh−1(τ) ∧ dx0 ∧ · · · ∧ dx3 + Hodge dual , φ = φ(τ) ,

B2 = α′M

2

[

f g1 ∧ g2 + k g3 ∧ g4
]

,

H3 = α′M

2

[

dτ ∧ (ḟ g1 ∧ g2 + k̇ g3 ∧ g4) +
1

2
(k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

]

,

F1 =
Nf (τ)

4π
g5 ,

F3 = α′M

2

{

g5 ∧
[(

F +
Nf (τ)

4π
f
)

g1 ∧ g2 +
(

1 − F +
Nf (τ)

4π
k
)

g3 ∧ g4
]

+

+ Ḟ dτ ∧
(

g1 ∧ g3 + g2 ∧ g4
)

}

, (3.2)

where M is the fractional D3-brane Page charge and f = f(τ), k = k(τ), F = F (τ) are

functions of the radial coordinate (and where the dot denotes derivative with respect to τ).

Notice that, consistently, dF1 = −Ω, where Ω is the D7-brane density distribution

form given in eq. (2.11). This and the other modified Bianchi identities

dF3 = H3 ∧ F1 − Ω ∧B2 ,

dF5 = H3 ∧ F3 − 1

2
Ω ∧B2 ∧B2 , (3.3)

follow from the WZ term of the smeared D7-brane action (see appendix C).
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3.2 The BPS equations

The modified Bianchi identity for F3 in (3.3) is automatically satisfied by the ansatz, while

that for F5 reduces to a first order differential equation for the warp factor

ḣ e2G1+2G2 = −α
′2

4
M2
[

f − (f − k)F +
Nf (τ)

4π
fk
]

+N0 , (3.4)

where N0 is an integration constant that we will set to zero as in [3] and [11]. The previous

equation is the same as the one obtained in [11] with the substitution Nf → Nf (τ). In

general, the BPS equations following from the bulk fermionic supersymmetric variations

and from the Bianchi identities are of exactly the same form as those in [11], with the only

substitution of Nf with the function Nf (τ). This is also due to the fact that, despite the

modified Bianchi identities of the forms Fi in the massive setup differing from those in the

massless case, the fermionic supersymmetric variations only contain the Fi and not the

dFi.

In this way one arrives at the same algebraic constraint for g as in [11]: g[g2 − 1 +

e2(G1−G2)] = 0. Its two solutions g = 0 and g2 = 1 − e2(G1−G2) correspond to the singular

(and resolved) conifold and to the deformed conifold respectively. Here we focus only on

this latter case since we want to have a regular solution at τ → 0.

The BPS equations for the 6d metric functions are

Ġ1 =
1

18
e2G3−G1−G2 +

1

2
eG2−G1 − 1

2
eG1−G2 ,

Ġ2 =
1

18
e2G3−G1−G2 − 1

2
eG2−G1 +

1

2
eG1−G2 ,

Ġ3 = −1

9
e2G3−G1−G2 + eG2−G1 − Nf (τ)

8π
eφ , (3.5)

while for the dilaton we have

φ̇ =
Nf (τ)

4π
eφ . (3.6)

Notice that, just as in the massless case, by defining λ1 = G1 − G2 we get the simple

equation λ̇1 + 2 sinhλ1 = 0, from which, up to an integration constant (that we fix to zero

as in the massless case) it follows that

eG1−G2 = tanh τ, → g−1 = cosh τ . (3.7)

Taking this result into account, for the flux functions we have

k̇ = eφ
(

F +
Nf (τ)

4π
f

)

coth2 τ

2
,

ḟ = eφ
(

1 − F +
Nf (τ)

4π
k

)

tanh2 τ

2
,

Ḟ =
1

2
e−φ(k − f) , (3.8)

supported by the algebraic constraint

e−φ(k − f) = tanh
τ

2
− 2F coth τ +

Nf (τ)

4π

[

k tanh
τ

2
− f coth

τ

2

]

. (3.9)
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In order to solve the above set of equations we will have to distinguish between the two

possible cases: 1) µ > 1, i.e. m > ΛIR and mq 6= 0, with the running function Nf (τ) being

equal to zero for τ ≤ τq; 2) µ < 1, i.e. m < ΛIR and mq = 0 with the running function

Nf (τ) being non trivial up to τ = 0.

3.3 The solution

Let us start by considering the |µ̂| > |ǫ| (i.e. µ > 1) case. Correspondingly, there is a region

τ ∈ [0, τq] where the effective D7-brane charge is zero. In that region, requiring regularity,

the solution is just (a slight generalization of) the unflavored KS one. Since Nf (τ) = 0,

the dilaton does not run (see eq. (3.6)) and the flux functions are just the KS ones, modulo

an overall constant

eφ = eφIR = constant , F =
sinh τ − τ

2 sinh τ
,

f = eφIR
τ coth τ − 1

2 sinh τ
(cosh τ − 1) ≡ eφIR fKS ,

k = eφIR
τ coth τ − 1

2 sinh τ
(cosh τ + 1) ≡ eφIR kKS . (3.10)

The metric is a warped product of 4d Minkowski and the deformed conifold with deforma-

tion parameter ǫ = ǫIR (2.3), since

e2G1 = e2G2 tanh2 τ , e2G2(τ) =
cosh τ

4
ǫ
4/3
IRK(τ) , e2G3(τ) =

3

2

ǫ
4/3
IR

K2(τ)
. (3.11)

The warp factor is given by

h(τ) =
2

2
3α′2M2

ǫ
8
3
IR

[

h0 − eφIR

∫ τ

0

(ξ coth ξ − 1)(sinh 2ξ − 2ξ)
1
3

sinh2 ξ
dξ

]

, (3.12)

where h(0) = h0 is an integration constant. In [3], h0 was fixed by imposing h(τ = ∞) = 0.

Since the solution we are considering is only valid up to τ = τq we cannot fix the integration

constant in the same way.

The above solution has to be continuously glued to the one obtained in the region

τ > τq where the effective D7-brane charge is non zero. The function Nf (τ) has a very non

trivial expression in general, so we will have to perform some numerical integration. For

the dilaton, for example, from eq. (3.6), it follows that

e−φ(τ) =
1

4π

∫ τ0

τ
Nf (ξ)dξ , (3.13)

where the τ0 is a point where eφ blows up. A simple analytic expression can be obtained

in the τ > arc cosh(2µ2 + 1) region where Nf (τ) is given by eq. (2.14)

eφ(τ) =
4π

Nf

1

(τ0 − τ) + 2µ2(1/ sinh(τ0) − 1/ sinh(τ))
, (τ > arc cosh(2µ2 + 1)) . (3.14)

Just as in the massless-flavored KS [11] or in the flavored KW cases [9, 18, 22], where τ0
was related to a Landau pole in the dual gauge theories, our solution cannot be continued

up to infinity: τ ≤ τ0.
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Requiring continuity at τq we find

e−φIR =
1

4π

∫ τ0

τq

Nf (ξ)dξ , (3.15)

which explicitly depends on Nf and µ.

A remarkable feature of the present setup is that also in the effectively flavored region

most of the solution can be given in an analytic way. In fact after some algebra we find

the following results for the metric functions

e2G1 =
ǫ

4
3
UV

4
e−

φ
3

sinh2 τ

cosh τ
K(τ) , e2G2 =

ǫ
4
3
UV

4
e−

φ
3 cosh τ K(τ) , e2G3 =

3

2
ǫ

4
3
UV

e−
φ
3

K(τ)2
,

(3.16)

where

K(τ) ≡
[

sinh 2τ − 2τ + η(τ)
]

1
3

2
1
3 sinh τ

, (3.17)

and d(4πe−φη)/dτ = (sinh 2τ − 2τ)Nf (τ). The function η(τ) is thus a constant in the

unflavored region. By requiring continuity at τq we fix this constant to zero so that

η(τ) =
eφ

4π

∫ τ

τq

(

sinh 2ξ − 2ξ
)

Nf (ξ) dξ , (3.18)

and

ǫUV = ǫIR e
φIR/4, K(τq) = K(τq) . (3.19)

The metric in the τ > τq region is thus a warped product of Minkowski 4d and a slight

deformation (driven by η(τ)) of the deformed conifold metric

ds26UV =
1

2
ǫ

4
3
UV e−

φ(τ)
3 K(τ)

[

1

3K3(τ)

(

dτ2 + (g5)2
)

+ cosh2
(τ

2

)

(

(g3)2 + (g4)2
)

+

+ sinh2
(τ

2

)(

(g1)2 + (g2)2
)

]

. (3.20)

In appendix D we will verify that this metric reduces to the one found in [11] when the

flavors are massless. The warp factor is given by

h(τ) = −4M2α′2

ǫ
8/3
UV

∫ τ

τq

e
2
3
φ(ξ)

sinh2 ξK(ξ)

[

f(ξ) − (f(ξ) − k(ξ))F (ξ) +
Nf (ξ)

4π
f(ξ)k(ξ)

]

dξ + h1 ,

(3.21)

where the integration constant h1 is constrained by the continuity condition at τq

h1 =
2

2
3α′2M2

ǫ
8
3
IR

[

h0 − eφIR

∫ τq

0

(ξ coth ξ − 1)(sinh 2ξ − 2ξ)
1
3

sinh2 ξ
dξ

]

. (3.22)

There is something important to notice here: for large values of τ → τ0, ḣ diverges as

−(τ0 − τ)−2. Thus, h(τ0) = −∞ (this happens also in the massless-flavored KS case).
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Figure 2. Representative plots of the solution for fixed h0 and: µ = 3, Nf = 1 (thick line): µ = 3,

Nf = 1.5 (dashed); µ = 0.5, Nf = 1 (normal). In the plots it is not visible the region near the

Landau pole, where the dilaton blows up and h → −∞. Notice that K is almost not varying with

µ and Nf .

Since the metric is only well defined for h > 0, we conclude that there exist some maximal

value of the radial coordinate τmax < τ0 where h vanishes and a singularity appears. This

behavior at τmax could be connected to the presence of a duality wall [11].

For the flux functions things are simpler. By using the constraint equation (3.9) and

imposing continuity at τq, we promptly get

f = eφ
τ coth τ − 1

2 sinh τ
(cosh τ − 1) ,

k = eφ
τ coth τ − 1

2 sinh τ
(cosh τ + 1) ,

F =
sinh τ − τ

2 sinh τ
. (3.23)

If the D7-branes reach the tip of the cone, i.e. if |µ̂| ≤ |ǫ| (i.e µ ≤ 1), there is no

effectively unflavored region, and thus the solution has the non trivial Nf (τ) dependence in

the whole τ ∈ [0, τmax < τ0] region. The 6d part of the warped metric is again a generalized

(η(τ) 6= 0) deformed conifold with parameter ǫ̂. In principle in this case we would not need

a condition analogous to the first equation in (3.19). In practice, by continuity with the

|µ̂| > |ǫ| solutions we will rescale ǫ̂ as in (3.19).

Sample plots of the relevant functions in the solution are given in figure 2. In order to

completely verify that these results are correct one has to check that the BPS equations

solve the equations of motion of gravity, dilaton and forms. To this aim a general result

in [35] helps: it was shown in that paper that, for general N = 1 backreacted solutions with

metric having a warped (3, 1) × 6 form, the solutions of the first order equations following

from the bulk fermionic supersymmetry variations and from the (source modified) Bianchi

identities, are also solutions of the Einstein equations and of the second order equations of

motion for the dilaton and the form fields, provided the sources (smeared or localized) are

supersymmetric (i.e. satisfy N = 1 preserving κ-symmetry conditions). Our setup indeed

satisfies these conditions. In appendix E we give the relevant ingredients to perform the

consistency check explicitly. See also [14] for relevant related comments.
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3.4 Validity and regularity of the solution

We can now study the Ricci scalar R and the square of the Ricci tensor RMNR
MN in the

string frame, to check the validity and regularity of the solutions we have found above. As

a first thing, one can check that since eφ ∼ 1/Nf , h ∼ M2/Nf (where for h we used the

rescaling in (3.19)), we have that R ∼ 1/
√
heφ ∼ Nf/M . Thus, as usual in D3-D7 systems,

the supergravity solution is reliable in the regime 1 ≪ Nf ≪ M . The same observation

applies also to the massless-flavored KS solution.

Both curvature invariants diverge at τ0, though they stay “small” up to values of τ

very close to τ0 (for example up to τ = 9.5 if we fix τ0 = 10). In order to study the behavior

near τ = 0 we need to know the behaviors of the functions h,K, eφ in the case µ < 1 (for

µ > 1 the IR solution is the KS one, so the the solution is certainly regular at τ = 0).

Clearly everything depends on the behavior of Nf (τ), which goes as nfτ for some constant

nf in the limit. With this, one can verify that the relevant functions have expansions of

the form

eφ ∼ eφ0 + eφ2 τ2 , h ∼ h0 − h2 τ
2 , η ∼ η5 τ

5 , K ∼ K0 + K2 τ
2 , (3.24)

where the explicit expressions for the coefficients φ0, φ2, h2, η5,K0,K2 are not relevant here.

Using these results it is easy to show that the components of the string frame metric have

expansions in even powers of τ around the origin, exactly as in the unflavored KS case. More

precisely, our massive-flavored solutions and the KS ones share the same IR topology. It is

interesting to outline the differences with the singular massless case [11]: there Nf =const,

eφ ∼ eφ0 + eφ1τ , η ∼ η4 τ
4, K ∼ K0 + K1 τ and the string frame metric expansion also

contains odd powers of τ .

The asymptotics (3.24), when inserted in the expressions for R and RMNR
MN , imply

that the curvature invariants go to a constant at τ = 0 and so the solutions are regular in

the IR for every µ > 0.

4 Quark-antiquark potential and screening lengths

In the previous section we have constructed a string dual of a flavored version of the

Klebanov-Strassler theory with a large number Nf of massive dynamical flavors. In this

section we begin to study how the dynamical flavors affect the non-perturbative dynamics

of the gauge theory. We are going to probe the latter with an external quark-antiquark

Q̄,Q pair with “constituent mass” MQ. The idea is to study how the static quark-antiquark

potential, as well as the screening lengths, depends on the sea quark parameters µ,Nf .

As we have observed in section 2.2, the dynamical flavors have all the same bare mass

m (related to µ), in modulus, but the corresponding D7-branes have different minimal

distances τmin from the origin, since they correspond to different phases of the mass pa-

rameter. The whole smeared distribution ends up at the absolute minimal distance τq
which we have associated to a minimal “constituent mass” parameter mq. The mass of

the probe quarks Q̄,Q is required to be much larger than mq: MQ ≫ mq. The Q̄Q bound

state is dual to an open string with the extrema lying on a probe D7-brane embedded in
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such a way that it reaches a minimal distance τQ ≫ τq, related in the usual way to the

“constituent mass” MQ, from the bottom of the space.3 Due to the existence of a maximal

value of τ , τmax < τ0 in the supergravity solution, MQ cannot be taken to be infinite and

τQ must lie below τmax.

The open string attached to the probe D7-brane bends in the bulk and reaches a

minimal radial position τtip. The Minkowski separation L between the test quarks, as well

as the potential V (L) (i.e. the total energy renormalized by subtraction of the static quark

masses) depend on τtip. For an open string embedding given by t = τ̂ , y = σ, τ = τ(y)

where y ∈ [−L/2, L/2] is one of the spatial Minkowski directions, one finds [36]

L(τtip) = 2

∫ τQ

τtip

GPtip

P
√

P 2 − P 2
tip

dτ ,

V (τtip) =
2

2πα′

[

∫ τQ

τtip

GP
√

P 2 − P 2
tip

dτ −
∫ τQ

0
G dτ

]

, (4.1)

where P,G are expressed in terms of the string frame metric

P =
√
gttgyy = eφ/2h−1/2 , G =

√
gttgττ =

1

3
eG3eφ/2 , (4.2)

and the “tip” subindex means that the quantity is evaluated at τ = τtip. It is not difficult

to check the relation dV
dτtip

=
Ptip

2πα′

dL
dτtip

. This for instance means that dV
dτtip

and dL
dτtip

have

the same sign. In some cases they can change sign simultaneously at some value of τtip so

the V (L) plot turns around [25].

We can now use the background solutions found in the previous sections to study how

the external quark interaction depends on the dynamical massive flavors. In doing so, we

vary one of the physical parameters Nf , µ (mq),MQ while keeping the others fixed. In the

numerical analysis below we have set 22/3M2α′2ǫ
−8/3
IR = 1 in the expression for h. The

masses are measured in units of 6−1/2ǫ
2/3
IR /(2πα

′) and we have put 2πα′ = 1. Finally,

remember that we are working in units gs = 1 and so what will be denoted by Nf in the

following numerical studies has to be read as gsNf in standard units.

As in [18], we have studied both the exact solutions and those obtained in the Heaviside

approximation where Nf (τ) is replaced by NfΘ(τ − τq). Apart from a mismatch in few

results for the screening lengths, the overall qualitative agreement of the two solutions is

general.

4.1 How to compare physical observables

The solution of section 3 allows to vary the flavor number Nf and mass µ. In general, there

is no obvious energy scale or coupling which is expected to stay fixed as these parameters

are varied. Thus, the comparison of various physical observables will crucially depend on

the choice of the energy scale or coupling which is kept fixed.

3More precisely, in order for the corresponding quarks to be non dynamical, we have to take τQ much

larger that the maximal possible value of τmin in the smeared distribution. As we have discussed in section 2

this maximal value is τb = 2arc sinh(|µ̂|/|ǫ|).
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There are actually several possibilities we can consider, since there are many scales

in the theory at hand. One can decide to fix, for example, the mass of some state in the

spectrum of the theory. From a lattice perspective a sensible possibility would be fixing

the mass of the lightest (0++) glueball.4 In our case, this is computationally very hard:

the holographic calculation of that mass is extremely complicated also in the unflavored

KS background [37]. Besides, the lightest glueball excitation in the KS model is actually a

massless pseudo-scalar [38]. For these reasons, we will not consider this scenario. Another

possibility is to keep fixed the mass of the lightest meson. We plan to provide in the

near future an accurate analysis of the mesonic spectrum (which is partly missing also in

the unflavored case), so we defer this possibility for a separate publication. We refer to

section 6 for some preliminary results on the spectrum. Finally, one could also consider

the possibility of taking fixed, say, the “effective ’t Hooft coupling” Meφ at some scale, for

example fixing either its IR value at τ = 0 or its UV one at the duality wall τ = τmax.

In this paper we will consider two alternative possibilities, which also have the ad-

vantage of being computationally easier to realize. They imply different ways of choosing

the integration constant h0. This constant sets “the scale” of the glueball and KK masses

h0 ∼ 1/m2
glue, as can be deduced from the metric.5 Moreover, it enters in the expression

for the IR string tension T ∼ (eφIR/h0)
1/2 (where eφIR explicitly depends on τ0, Nf , µ).

We will thus consider the following possibilities:

• Possibility 1: constant glueball scale h0. Keeping constant h0 means fixing the glue-

ball and KK scale. The string tension T will change as we change Nf , µ.

• Possibility 2: constant string tension T . Keeping constant the string tension T

means performing the rescaling h0 → h0e
φIR . The glueball scale will thus change as

we change Nf , µ.

Let us notice that the string tension is defined from the large distance behavior of the

heavy (static) quark-antiquark potential in the theory. Since there are dynamical flavors,

the heavy quark-antiquark bound state is metastable towards decay into a pair of heavy-

light mesons. Thus one has to keep in mind that for Possibility 2, the string configuration

which defines T is metastable.

In both “Possibilities”, the radial value τ0 at which the dilaton diverges (a kind of UV

Landau pole in the dual gauge theory picture) is kept fixed. Clearly, other choices (other

“Possibilities”) could include the variation of this scale too. We hope to analyze these

scenarios in the near future.

In figures 3 and 4 we present various plots of the static potential V (L) as the flavor

parameters are varied using the two prescriptions described above. The potential, which

has generically a Cornell-like shape, decreases as MQ is increased. The behavior w.r.t.

to Nf and the mass parameter, instead, depends on the chosen prescription. For Possi-

bility 1 V (L) decreases with Nf and increases with mq (with a crossing of potentials for

intermediate values of L). For Possibility 2 it behaves in the opposite way.

4We are grateful to Biagio Lucini and Massimo D’Elia for their comments on these issues.
5Clearly, fixing h0 is not enough to fix precisely the numerical value of the mass of the 0++ glueball,

which depends also on other features of the background.
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Figure 3. The potential at fixed glueball scale h0 = 10. From left to right: Nf = 1, mq = 1,

MQ = 40, 50, 60 (dark to pale); MQ = 50, mq = 1, Nf = 0.6, 1, 1.4 (thick to thin); MQ = 50,

Nf = 1, mq = 1, 5, 10 (continuous, dashed, dotted).

Figure 4. The potential at fixed IR string tension. From left to right: Nf = 1, mq = 1, MQ =

40, 50, 60 (dark to pale); MQ = 50, mq = 1, Nf = 0.6, 1, 1.4 (thick to thin); MQ = 50, Nf = 1,

mq = 1, 5, 10 (continuous, dashed, dotted).

4.2 The screening length

As we have already observed, due to the presence of the dynamical flavors, the Q̄Q state

is metastable, since a quark-antiquark dynamical pair q̄, q can be popped out from the

vacuum causing the decay Q̄Q→ Q̄q + q̄Q. In our setup, the lightest possible heavy-light

mesons which can arise from the decay of Q̄Q are nearly massless. This is due to the

fact that, since the dynamical flavor branes are smeared, some of them will intersect the

probe one. The corresponding heavy-light meson is holographically a string living at the

intersection of the two branes and its mass is roughly given, at leading order, by MQ/λ [39],

where λ≫ 1 is the bare ’t Hooft coupling of the theory.

The minimal static quark distance at which a pair of these nearly massless mesons can

be produced is called “screening length” Ls. This is thus defined as

V (Ls) = −2MQ + 2
MQ

λ
. (4.3)

Notice that from the relations (4.1) it follows that V (0) = −2MQ. A non trivial value for

Ls can thus be obtained only without neglecting the 1/λ suppressed mass of the heavy-light

mesons. We have used a conventional value λ = 100 in our numerical analysis, which is

intended to give a qualitative picture of how the screening length depends on the flavor

parameters.6 The results are in figures 5 (constant glueball scale) and 6 (constant string

tension) for the two “Possibilities” discussed in section 4.1. For consistency with notations

6We have neglected for simplicity the produced meson interactions as well as the dependence of λ on the

flavor parameters. It would be interesting to include these contributions in the calculation. Notice that,

instead, the first α′ corrections to the background will induce subleading corrections to the quark-antiquark

potential.
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Figure 5. The screening length for constant glueball scale h0. In the first plot MQ = 50 and the

higher (lower) line corresponds to mq = 1 (µ2 = 0.125). In the second plot Nf = 1 and the higher

(lower) line corresponds to mq = 1 (µ2 = 0.125). In the third and fourth plots MQ = 50 and

Nf = 1.

Figure 6. The screening length for constant string tension T . In the first plot MQ = 50 and the

higher (lower) line corresponds to mq = 1 (µ2 = 0.125). In the second plot Nf = 1 and the higher

(lower) line corresponds to mq = 1 (µ2 = 0.125). In the third and fourth plots MQ = 50 and

Nf = 1.

in previous studies [17, 18, 22], we have used mq (determined by τq) as mass parameter in

the µ > 1 region, where 2µ2 = cosh (τq) + 1. For µ < 1, on the other hand, mq is zero, and

we use directly µ as flavor mass parameter.

As anticipated, it is evident from the plots in figure 5 and 6 that the behavior of the

physical observables in the theory crucially depends on the choice of the fixed scale. The

screening length Ls is in fact a monotonically increasing function of Nf if the glueball

scale is kept fixed (figure 5, first plot), while it is monotonically decreasing if it is the

string tension to be kept fixed (figure 6, first plot). For both Possibilities, the screening

length Ls is monotonically increasing with the static quark mass MQ (figures 5, 6, second

plots). The same is true for the behavior with the dynamical flavor mass µ in the regime

µ < 1 (figures 5, 6, third plots). But the behavior for µ > 1 is again very different: while

in the constant glueball scale case Ls has a local maximum in the intermediate regime

of dynamical flavor masses (figure 5, fourth plot),7 in the constant string tension case it

continues to be monotonically increasing (figure 6, fourth plot).

Naively, one would expect Ls to be a decreasing function of Nf (the more flavors there

are, the more the screening is effective), and an increasing function of µ and mq (the more

the flavors are massive, the less the screening is effective). We see that the constant string

tension “Possibility 2” realizes these expectations.

Due to the smearing, the decay defining the screening length studied in this section is

suppressed as 1/Nc. In appendix F we study a different critical length, the “string breaking

7This feature is not present in the Heaviside approximation, where the behavior is always increasing.

A possible explanation is that for “sufficiently large” mq the Heaviside is not a very good approximation

(Nf (τ ) is smoothly increasing).
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length”, defined in such a way as to reduce this huge suppression to order Nf/Nc. The

results for the string breaking length are qualitatively similar to the ones for the screening

length, apart from a different dependence on mq.

5 The quantum phase transitions

The presence of a quantum phase transition in the heavy quark potential V (L) calculated

in string theory, appearing as a discontinuity of the first derivative of V (L), is a very

common phenomenon [17, 18, 21, 24–28]. It is tempting to conjecture that its occurrence

is generic in string duals of theories with at least two mass scales, for example confining

theories with some additional mass scale.8 The flavored KS theory is not an exception to

this behavior. In this section, we discuss the presence of the quantum phase transition

in the (deformation of the) unflavored case [3], in the massless case of ref. [11] and in

the massive case presented in this paper. We also discuss the universality properties of

the phase transition in all the theories with a supergravity dual, arguing that the critical

exponents are always classical in the regime of parameter where the gravity description is

reliable.

5.1 Phase transitions in the (flavored) KS theory

The KS theory is a confining theory with a dynamical scale ΛIR. The integration constant

h0 in the gravity dual was fixed in [3] to some specific value h0KS by requiring that h(∞)=0.

There are indications that a departure of h0 from the value h0KS in this type of theories

is dual to a non-trivial source of a higher dimensional operator [40]. Thus, values of h0

different from h0KS introduce a second mass scale in the theory. Variations of this scale

with respect to ΛIR can cause the heavy quark potential to develop a quantum phase

transition. In fact, it can be explicitly verified that this is what happens when h0 is tuned

above some critical value hc which is larger than h0KS . Precisely the same phenomenon

happens in the CVMN solution [31], as described in [21]. The features of the potential are

always the same in these cases and we are going to describe them in the following. This

example just indicates that also in the flavored case the phase transition is to be expected.

In the massless-flavored KS case [11], the backreacted D3-D7 solution is singular at

τ = 0. Just as in the massless-flavored CVMN case [7], the singularity causes the static

quark-antiquark distance L to have a maximum and the V (L) plot to have a turnaround

at L = Lmax. In figure 7 we give a sketch of this behavior for a “large” value of the

integration constant h0. Crucially, for sufficiently small values of h0, provided the latter

is still larger than a certain critical value, there is also a second turnaround and a phase

transition appears.

Though the massive case is not continuously connected with the massless one (since

our gravity solution is always regular), we can figure out which form we should expect

8Confining theories with supergravity duals have actually already at least two distinct mass scales, which

can be identified with the confining string tension and the glueball scale. Nevertheless, the ratio of these

two scales cannot be varied at will while remaining in the regime where the gravity description is reliable

(the string tension must remain much larger than the glueball scale). Due to this reason, for our present

discussion these two scales cannot be considered independent.
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Figure 7. The static potential in the massless case for large h0. The IR singularity causes L to

have a maximal value. At L = Lmax, V (L) turns around.

for V (L) due to the previous behavior. For µ > 1, the IR solution is just the unflavored

one: for this reason we see an unbounded linear behavior for the “connected part” of V (L)

at large L. This behavior can be glued with the massless one allowing the potential to

have a double turnaround and an asymptotic linear increase. This is actually what it was

found in [17] in the massive-flavored CVMN theory (the plots are analogous to the ones in

figure 9). The double turn around is such that there is a quantum phase transition between

a Coulomb-like behavior for the potential at small L and the linear behavior at large L.

In [17] this quantum phase transition was recognized to be a first order Van der Waals-like

transition, occurring for flavor mass parameters smaller than a certain critical value. For

larger values the Coulomb and the linear phase of V (L) are smoothly connected. At the

critical point for the disappearance of the phase transition, the latter is of second order.

The solution presented in this paper is dual to a theory with many scales. Besides

ΛIR, there is a UV Landau pole-like scale related to τ0, the scale µ of the dynamical quarks

and finally the higher dimensional operator scale set by h0. Thus, there is room for a quite

rich pattern of appearance of phase transitions in the heavy quark potential. In fact, these

phase transitions appear if the parameters are varied in suitable ways. In some cases, there

are actually two distinct phase transitions, for example if we keep constant the IR string

tension and we vary the mass of the dynamical flavors. The first transition happens for

mass smaller than a critical value µc which is an increasing function of Nf , as can be seen

in figure 8 (see also figure 9). The values of µc can be smaller or larger than µ = 1, so

the latter point is not at all peculiar from this point of view.9 The second phase transition

happens for mass above a second, larger critical value, i.e. when mq approaches MQ. As

can be seen from the second plot in figure 9, which is equivalent to the pressure-volume

graph of the Van der Waals system, the presence of a local minimum in the L(τtip) plot

implies the existence of the phase transition.

It would be very interesting to give an exhaustive description of the patterns of the

phase transitions in this complicated theory. Our present aim is just to argue that, being

the phase transition such a generic phenomenon, it is worthwhile to study its properties.

In the next section we are going to discuss its universality class.

9Let us note that in the Heaviside approximation one has the very same result, even if of course the

phase transition happens for µc above µ = 1.
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Figure 8. Left: the critical value of the flavor mass µc for the appearance of the phase transition,

as a function of the number of flavors Nf in the constant IR string tension case. Right: in the

same case, the V (L) plot for Nf = 1 and increasing values of µ (from left to right), showing the

disappearance of the phase transition above µc.

Figure 9. The phase transition in the potential V (L) (left) is implied by the presence of a local

minimum in the L(τtip) (center), or equivalently V (τtip) (right), plot.

5.2 Critical exponents, universality classes and cusp catastrophes

As we have argued above, the presence of the phase transition in our models is signaled by

a local minimum in the behavior of the quark separation L as a function of the position τtip
of the tip of the string describing the Wilson loop. Let us focus on the family of functions

L(τtip, µ), where we consider for simplicity just the behavior of the flavored KS system as

we vary the mass µ of the dynamical flavors (equivalently, we could use h0, for example).

Near the critical point at µ = µc we have been able to verify numerically, for a selected

choice of parameters10 that the function L(τtip, µ) is well approximated by

L

Lc
− 1 ≈ −

(

τtip
τc

− 1

)3

−
(

µ

µc
− 1

)(

τtip
τc

− 1

)

. (5.1)

The behavior of the curve near the critical point allows us to extract the related critical

exponents (for their definition see, for example, [41]) and to determine the universality

class of our phase transitions. Along the critical line µ = µc we find that (L/Lc) − 1 ≈
[(τtip/τc)− 1]δ with the critical exponent δ = 3. At L = Lc, µ < µc we find [(τtip/τc)− 1] ≈
[1−(µ/µc)]

β with critical exponent β = 1/2. The values we have found for δ and β are thus

the classical ones. The same results hold for the transition in the static quark-antiquark

potential appearing in the unflavored KS model when varying h0.

10We have used gs = 1, Nf = 1, τ0 = 10, h0 = 10 in the constant IR string tension case.
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Due to the scaling relations, two critical exponents are sufficient to determine com-

pletely the universality class of the system, once its dimension is known. The scaling

relations read

α+ 2β + γ = 2 , γ = β(δ − 1) , 2 − α = νd , γ = ν(2 − η) . (5.2)

The dimension d enters the scaling relations of the critical exponents related to the cor-

relation functions, which we cannot calculate; so, the “effective dimension” of our system

is undetermined. On the other hand, the scaling relations let us conclude that, given

δ = 3, β = 1/2, the other critical exponents are α = 0 and γ = 1, as in the Landau (mean

field) theory, and do not depend on the dimension.

Considering that both in [25] and in [24] the same classical exponents are found for

phase transitions in different dimensions and driven by different mechanisms, we are led

to conclude that there must be a universality at work, which would reflect the fact that

we are basically analyzing a classical object: a macroscopic string. We would like to argue

that this is indeed the case.

The universality of the critical exponents is related to the theory of singularity of

families of functions, or “Catastrophe theory”, see for example [42] and [43] for a related

connection in the context of charged black holes.

The basic theorem of catastrophe theory is due to Whitney and was extended by

Thom and basically states that the singularities of a generic function can be of only a few

types.11 The theorem means that a generic function is “equivalent”,12 in the vicinity of

the singularity, to some “prototype” singularity. The crucial point in this discussion is that

the critical exponents appear to be invariant among the class of equivalent functions [42].

The prototype singularity which interests us is called the “cusp catastrophe” and it is

defined by the function

f(x, a, b) = x3 + ax+ b , (5.3)

which has its critical point at a = b = 0.13. At the “critical isotherm” (a = 0) the condition

f = x3+b = 0 determines the value of the critical exponent δ = 3 from the defining relation

b ∼ xδ. Analogously, setting b = 0, the condition f = x2+a = 0 determines another critical

exponent β = 1/2 from the defining relation x ∼ aβ. The corresponding “potential” of the

Landau theory is just the integral in x of the function f above, and is called “unfolding”

in the catastrophe theory language. The cusp can be seen by drawing in 3d the 2d surface

f = 0, and projecting it on the (a, b)-plane: in this plane, two curves meeting with a cusp

at the critical point (a = 0, b = 0) are the images of the local maxima and minima of b(x)

for different a’s. For a detailed description of the cusp catastrophe, see for example [42].

11Let us stress that our system is “generic” (that is, without special symmetries or properties) by con-

struction, since we only have it numerically. But in the case analyzed in ref. [25] the system is described

analytically and is indeed generic.
12We are actually dealing with families of functions which also depend on some order parameters ai, i =

1, . . . , m (for us, it will be m = 2). Two families of functions F, F̃ : R
n × R

m → R are said to be

equivalent if there are diffeomorphisms y : R
n+m → R

n, e : R
m → R

m, g : R
m → R such that F (x, ai) =

F̃ (y(x, ai), e(ai)) + g(ai).
13The equation of state of the Van der Waals system is recovered by the map x = V − 1, a = T − 1, b =

P − 1 in units of the corresponding critical values of the volume V , temperature T and pressure P .
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Remarkably, our curve L(τtip, µ) around the critical point (eq. (5.1)) is precisely of the

form f(x, a, b) = 0 provided we map

x↔ τtip
τc

− 1 , a↔ µ

µc
− 1 , b↔ L

Lc
− 1 . (5.4)

The curve L(τtip, µ) passes from being monotonic when µ > µc to developing a local

minimum (and a local maximum) when µ < µc, where there is a first order phase transition

(the transition is second order precisely when µ = µc). For such a family of functions

Thom’s theorem states that the system is equivalent to the cusp catastrophe (5.3), and

this determines its universality class. Similar maps hold for analogous phase transitions in

the quark-antiquark potential in other models with a gravity dual. Thus, the heavy quark

potential in the stringy regime is equivalent to the cusp catastrophe, every time that there

is a phase transition. The cusp catastrophe is basically the Van der Waals system, so it

implies that the critical exponents are the classical ones. As said, the crucial point is that

the critical exponents appear to be invariant among the class of equivalent functions [42].

Thus, we are led to conclude that the phase transition in the heavy quark potential in

a theory with a supergravity dual is in the universality class of the Van der Waals system,

at least in the regime of parameters where the gravity description is reliable.

6 A preliminary analysis of the unquenched mesonic spectrum

In this section we consider a probe D7-brane embedded, in the backreacted solution we

have found, in a similar way as the dynamical flavor brane sources. Fluctuations on the

probe brane worldvolume are mapped to mesonic modes of spin J = 0, 1. Our aim is

to study how the spectrum of these fluctuations, hence the mass spectrum of the related

mesons, varies with the dynamical flavor parameters Nf , µ.

In general, the task of computing the spectrum, even in the quenched case, is quite

difficult. This happens because, even if the background metric is simple, the induced

metrics on the probes can become quite involved and the differential equations for the

various modes can be non trivially coupled. For simplicity here we will only focus on the

simplest fluctuations in the probe D7-brane action, i.e. fluctuations of the worldvolume

gauge field. The equations of motion to solve will be of the form ∂a(e
−φ√−gF ab) = 0,

where g stands for the induced string frame metric.

Let us start by rewriting our fully backreacted string frame metric, in a form similar

to [30]

ds2 = e
φ
2

[

h−
1
2 dx2

1,3 + h
1
2 B2(τ)(dτ2 + (h3 + h̃3)

2) +

+ h
1
2 A2(τ)

(

h2
1 + h2

2 + h̃2
1 + h̃2

2 +
2

cosh τ
(h2h̃2 − h1h̃1)

)]

, (6.1)

where

B2(τ) =
e2G3

9
, A2(τ) = e2G2 , (6.2)
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and

h1 = − cos
ψ

2
sin θ1dϕ1 + sin

ψ

2
dθ1 , h2 = − sin

ψ

2
sin θ1dϕ1 − cos

ψ

2
dθ1 ,

h̃1 = − cos
ψ

2
sin θ2dϕ2 + sin

ψ

2
dθ2 , h̃2 = − sin

ψ

2
sin θ2dϕ2 − cos

ψ

2
dθ2 ,

h3 =
dψ

2
+ cos θ1dϕ1 , h̃3 =

dψ

2
+ cos θ2dϕ2 . (6.3)

Moreover let us rewrite

h̃1 = (h1 − dγ̂) cos δ̂ − (h3 sin γ̂ + h2 cos γ̂) sin δ̂ ,

h̃2 = (h1 − dγ̂) sin δ̂ + (h3 sin γ̂ + h2 cos γ̂) cos δ̂ ,

h̃3 = (h3 cos γ̂ − h2 sin γ̂) + dδ̂ , (6.4)

where we have basically replaced θ2, ϕ2 by γ̂ ∈ [0, π], δ̂ ∈ [0, 4π).

The reason why we want to make this very complicated change of variables is that

the non-chiral embedding we are interested in takes a simple form in these coordinates. In

particular, for the case of a massless embedding z1 − z2 = 0, the D7 profile can be simply

given by γ̂ = 0, δ̂ =const [30].

Following [30], let us ignore the dependence of the fluctuations on the angles and

expand the worldvolume gauge field as

A(xµ, τ) = eik·x [a(τ)vµdx
µ + a1(τ)h1 + a3(τ)h3)] . (6.5)

From the related equations of motion we find (−k2 = M2)

∂τ
(

A2 tanh τ∂τa
)

+M2 hA2B2 tanh τ a = 0 ,

∂τ

(

coth τ
2

h
∂τa1

)

+

[

−1

2
∂τ (h

−1) − 1

4

tanh τ
2

h
+M2B2 coth

τ

2

]

a1 = 0 ,

∂τ

(

A2 tanh τ

B2h
∂τa3

)

+

[

−∂τ (h−1) − B2 coth τ

A2h
+M2A2 tanh τ

]

a3 = 0 . (6.6)

Notice that if we take φ = 0, these equations reduce to (4.7), (4.9), (4.10) in [30].14

We can now use the standard shooting technique to get the mesonic spectrum. Here

we only focus on the a(τ) mode. We take τ0 to be fixed and impose regularity at τ → 0.

We cannot impose normalizability at τ → ∞ since our solutions are defined only up

to τmax where h(τmax) = 0. The most sensible choice seems to treat this point as the

position of an infinite wall for the fluctuations and so to impose that they vanish at τmax.

These boundary conditions render the spectrum discrete. We have examined it for the two

Possibilities discussed in section 4, i.e. fixed glueball mass scale and fixed IR string tension.

The results are shown in figure 10 and 11. The figures show that, as for the critical

lengths, the behavior depends on the prescription we choose to fix some physical scale in

the theory. For Possibility 1 (resp. Possibility 2) we see that the mesonic masses decrease

14Modulo a typo in equation (4.10) of [30].
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Figure 10. Plots of the meson masses with Nf and mq for fixed glueball (and KK) scale.

Figure 11. Plots of the meson masses with Nf and mq for fixed IR string tension.

(resp. increase) with the number of dynamical flavors and increase (resp. decrease) with

their mass.

The lattice study in ref. [2], performed at fixed bare coupling, shows a decreasing

behavior with Nf of the difference between the meson masses of two distinct excitations

(the n = 3 and n = 1 modes in our notation). This behavior corresponds to the one

of “Possibility 2”, i.e. the constant string tension case. Considering also the results for

the screening lengths, we are led to conclude that keeping fixed the string tension is the

prescription giving the most natural, possibly useful results.

7 Summary and discussion

The study of backreacted supergravity backgrounds offers a big opportunity to explore the

effects of unquenched flavors in a holographic setup. This analysis could shed light on new

non-perturbative phenomena that take place in the planar limit of gauge theories. In this

paper we have developed this program for the case in which the dual gauge theory is the

conifold theory of Klebanov and Strassler and the flavors are non-chiral and massive, with

masses either larger or smaller than the dynamical IR scale ΛIR. This is an interesting

setup to consider, since it amounts to adding dynamical flavors to a confining gauge theory,

like we do with pure Yang-Mills to get QCD.

In our approach, the dynamics of the backreacted gravity plus branes system is gov-

erned by an action in which the supergravity fields of the type IIB theory are coupled to
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the DBI+WZ action of the flavor D7-branes. Thus, the D7-branes act as dynamical sources

of the different supergravity fields, whose equations of motion and Bianchi identities are

modified by the presence of the flavor branes. In the Veneziano limit the number of flavors

Nf is large and we can homogeneously smear the flavor branes in their transverse space.

This has the effect of substituting the δ-functions source terms by continuous distributions.

Amazingly, the flavor distribution function Nf (τ), that results from smearing also along

the phases of the flavor mass terms, can be obtained in analytic form. The smeared D7-

branes correspond to flavors having all the same mass m in modulus. When m > ΛIR, the

distribution extends up to a certain finite value τq of the radial coordinate. When the mass

is smaller than ΛIR the distribution extends up to τ = 0. It is important to keep in mind

that in this case the flavor branes do not all extend up to the origin: some flavor branes

end up at a finite distance from τ = 0 depending on the shift between the phase of the

flavor mass term and that of the complex deformation parameter ǫ. Thus, differently from

the massless case, the origin is not a special point where all the flavor branes overlap.

Knowing the density distribution of the flavor branes one can write an ansatz for the

supergravity fields which is a direct generalization of the one for the massless case adopted

in [11]. The corresponding BPS equations for the different functions of the ansatz, which

also solve the equations of motion, can be integrated in closed form and the result is a

generalization of both the unflavored [3] and massless flavored [11] backgrounds. Our new

solutions have small curvature, and thus are reliable, if 1 ≪ Nf ≪ M . As in the massless

flavored case of [11] they have an UV singularity at τ = τmax where the warp factor

vanishes, and a would-be Landau pole at τ0 > τmax where the dilaton diverges. However,

remarkably, the massive flavored solutions are always regular at τ = 0 precisely like the

unflavored KS solution and contrary to what happens when the unquenched quarks are

massless.

With the flavored solution at our disposal we have started a holographic analysis of

the non-perturbative dynamics of the dual planar gauge theory. In particular, we have

considered the properties of bound states formed by an external heavy quark Q and anti-

quark Q̄. In the presence of dynamical flavors the Q̄Q states are metastable and can decay

into heavy-light mesons. To characterize these decays we have numerically computed the

corresponding screening lengths and we have studied their behavior as functions of Nf and

of the mass parameters, keeping constant either the glueball mass scale or the IR string

tension. We have also presented some preliminary analysis of the mesonic spectrum, ob-

tained by analyzing regular fluctuations of a D7-brane probe (corresponding to massless

flavors) in the backreacted background.

From the holographic study of the heavy quark potential, i.e. from a classical analysis

of a static macroscopic open string on the background, we have uncovered the existence

of quantum phase transitions, which seem to generically occur whenever there are at least

two distinct physical scales in the dual gauge theory. Our system has several scales and we

have found numerical evidence that the “connected” part of the static potential undergoes

first-order quantum phase transitions between a Coulomb-like and a linear behavior. These

transitions occur until some parameter (like the flavor mass) reaches a critical value, where

the transitions become of second order. We have evaluated the corresponding critical
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exponents and we have found that, in all the cases, they are given by the classical mean-

field values. These results, together with those of refs. [25] and [24], led us to conjecture

the existence of a universality class for the transitions in the static potential of every planar

gauge theory having a supergravity dual.

In this work we have just started to examine the predictions of the Klebanov-Strassler

background with massive unquenched flavor. The fact that we have an IR regular solution

with new parameters at our disposal (as compared with the unflavored and massless flavored

solutions) opens new windows for many potentially interesting future studies.

One problem of obvious interest, for which we have already presented here some prelim-

inary results, is the analysis of the mesonic spectrum in the backreacted background. We

would like to determine the dependence of more generic mass levels on the number of un-

quenched flavors and on their masses, as well as the influence of the different prescriptions

to determine the parameters of the solution.

Another interesting direction of future research is the analysis of the entanglement

entropy for our backreacted solution, following the proposal of ref. [44] for theories that have

a gravity dual. In this holographic formulation the quantum entanglement entropy between

a region A and its complement is obtained as the minimal area of a surface that approaches

the boundary of A at the boundary of the bulk manifold. This proposal has been applied in

ref. [45] to the study of confining (unflavored) backgrounds. The authors of [45] found that

the entropy of a large class of confining models, including the Klebanov-Strassler solution,

displays a quantum phase transition similar to the confinement/deconfinement transition at

finite temperature. It would be very interesting to analyze how the inclusion of unquenched

flavor modifies this results. In particular, by using this entanglement entropy approach we

should be able to find a phase structure similar to the one uncovered here from the analysis

of the Wilson loops.

Finding a finite temperature version of our supergravity solutions would be of great

interest. This would allow us to study the properties of the dual quark-gluon plasma and

of the corresponding flavored black holes and to describe how the phase structure of our

SQCD-like models varies with the flavor parameters.15 Due to the absence of supersym-

metry, the main technical problem to tackle in this case is the fact that one has to deal

directly with the second-order equations of motion of the gravity plus branes system. The

stability of a distribution of smeared flavor branes in this non-supersymmetric setup is an

issue that should be analyzed with care. The relevance of this line of research would also be

due to the fact that, since lattice gauge theory is intrinsically Euclidean, the string/gauge

theory correspondence is at present the only available tool to explore real-time dynamical

properties of strongly coupled QCD-like quark-gluon plasmas.

Finally, it would be important to uncover the details of the field theory which lies in

the deep IR of the flavored cascading model, specially in the small (or zero) mass 0 ≤ µ ≤ 1

cases. Finding the precise maps between field theory vacua and supergravity solutions will

surely require further investigation.

We are working on some of these problems and we intend to report on them in a near

future.
15See [46] for recent related studies in compact models at weak coupling.
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A Finding Nf(τ ) from the smeared embedding

In this paper we have focused on backreacted D3-D7 solutions on the deformed conifold,

the manifold defined by the equation z1z2 − z3z4 = ǫ2 in C4. The D7-brane embeddings we

have considered are the “non-chiral” ones discussed in [30], with representative equation

z1 − z2 = 2µ̂. The general family of embeddings along which we have distributed the

D7-branes, is obtained through an SO(4) rotation of the previous equation

p̄z1 − pz2 + q̄z3 + qz4 = 2µ̂ , (A.1)

where p, q span a unit 3-sphere

p = cos
θ

2
ei(

χ+φ
2

) , q = sin
θ

2
ei(

χ−φ
2

) , (A.2)

and χ ∈ [0, 4π), φ ∈ [0, 2π), θ ∈ [0, π].

To give more explicit expressions in terms of the standard deformed conifold coordinate

we can use the known relations

z1 = ǫ e−
i
2
(ϕ1+ϕ2)

[

cos
θ1
2

cos
θ2
2
e−

i
2
ψe−

τ
2 + sin

θ2
2

sin
θ1
2
e

i
2
ψe

τ
2

]

,

z2 = ǫ e
i
2
(ϕ1+ϕ2)

[

sin
θ1
2

sin
θ2
2
e−

i
2
ψe−

τ
2 + cos

θ2
2

cos
θ1
2
e

i
2
ψe

τ
2

]

,

z3 = −ǫ e i
2
(ϕ1−ϕ2)

[

sin
θ1
2

cos
θ2
2
e−

i
2
ψe−

τ
2 − sin

θ2
2

cos
θ1
2
e

i
2
ψe

τ
2

]

,

z4 = −ǫ e− i
2
(ϕ1−ϕ2)

[

sin
θ2
2

cos
θ1
2
e−

i
2
ψe−

τ
2 − sin

θ1
2

cos
θ2
2
e

i
2
ψe

τ
2

]

. (A.3)

– 28 –



J
H
E
P
0
3
(
2
0
0
9
)
1
5
3

In the limit τ → ∞, |ǫ| → 0, with fixed |ǫ|2eτ ∼ r3 the above expressions approach the

singular conifold ones.

Making use of these formulas we can rewrite (A.1) as

sinh
τ

2
∆1 − i cosh

τ

2
∆2 =

µ̂

ǫ
, (A.4)

with

∆1 = cos
θ

2

[

− cos
θ1
2

cos
θ2
2

cos ξ1 + sin
θ1
2

sin
θ2
2

cos ξ2

]

+

+ sin
θ

2

[

sin
θ1
2

cos
θ2
2

cos ξ3 + cos
θ1
2

sin
θ2
2

cos ξ4

]

,

∆2 = cos
θ

2

[

cos
θ1
2

cos
θ2
2

sin ξ1 + sin
θ1
2

sin
θ2
2

sin ξ2

]

+

+ sin
θ

2

[

sin
θ1
2

cos
θ2
2

sin ξ3 − cos
θ1
2

sin
θ2
2

sin ξ4

]

. (A.5)

We have defined

ξ1 =
1

2
(ϕ1 + ϕ2 + ψ + ξ + φ) , ξ2 =

1

2
(ϕ1 + ϕ2 − ψ + ξ + φ) ,

ξ3 =
1

2
(ϕ1 − ϕ2 − ψ − ξ + φ) , ξ4 =

1

2
(ϕ1 − ϕ2 + ψ − ξ + φ) , (A.6)

satisfying the relation ξ1 + ξ3 = ξ2 + ξ4. Notice also that the ϕ’s only enter through the

combinations ϕ1 + φ and ϕ2 + χ. Setting θ = χ = φ = 0 (giving z1 − z2 = 2µ̂), the ∆’s

reduce to the Θ’s in (2.6).

By explicit computation, one finds

∆2
1 + ∆2

2 =
1

2

[

1 + sin θ1 sin θ2 sin(ϕ1 + φ) sin(ϕ2 + χ) +

+ cos θ (cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 + φ) cos(ϕ2 + χ)) +

+ sin θ (− sin θ1 cos θ2 cos(ϕ1 + φ) − cos θ1 sin θ2 cos(ϕ2 + χ))
]

. (A.7)

Notice that the ψ-dependence has dropped out of this expression. It can be checked that

∆2
1 + ∆2

2 ≤ 1.

From the modulus squared and phase in (A.4), one finds the equations

f1 = −2 arctan

[

coth
(τ

2

) ∆2

∆1

]

− 2β + 4π n = 0 ,

f2 = sinh2 τ

2
∆2

1 + cosh2 τ

2
∆2

2 − µ2 = 0 , (A.8)

with

µ ≡ |µ̂|
|ǫ| , µ̂ ≡ |µ̂|ei β . (A.9)

The minimal value of τ reached by one of these embeddings is the one for which the

inequality ∆2
1 + ∆2

2 ≤ 1 is saturated. At that point, using the second equation in (A.8),

one finds ∆2
1 = cosh2 τmin

2 −µ2 and ∆2
2 = − sinh2 τmin

2 +µ2. Then, from the first expression
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in (A.8), we find the following relation among the modulus and phase of the mass term

and the minimal value τmin

tan2 β = coth2 τmin

2

(

− sinh2 τmin
2 + µ2

cosh2 τmin
2 − µ2

)

. (A.10)

A.1 Smearing the embedding

Let us now consider the maximally symmetric smeared distribution of Nf ≫ 1 D7-branes

generally embedded as above. The related density distribution Ω, whose general expression

is given in eq. (2.10), can be rewritten, after the trivial integration over β, as

Ω =
Nf

32π3

∫

δ(f2) sin θdf1 ∧ df2dθdχdφ . (A.11)

Despite this being a quite non trivial integral, we know that the result is severely con-

strained by the symmetries to take the form given in (2.11). In that expression Ωτψ results

to be independent on θi, ϕi and so we can just pick, say, θi = ϕi = 0 in the corresponding

expression deduced from (A.11). This way we get

f1 = −χ− φ− ψ + 2arg(ǫ) + 2 arctan

[ − sin (ψ + χ+ φ)

e−τ − cos (ψ + χ+ φ)

]

− 2β + 4πn ,

f2 = 2[cosh τ − cos (ψ + χ+ φ)]|ǫ|2 cos2 θ

2
− 4|µ̂|2 , (A.12)

and so

(df1 ∧ df2)τ,ψ|ψ=0 = −2[cosh τ + cos (χ+ φ)]|ǫ|2 cos2 θ

2
, (A.13)

where we have put ψ = 0 since Ωτψ is not expected to depend on ψ. Using this expression

and integrating over θ we get

Ωτψ = − Nf

64π3

∫

4|µ̂|2[cosh τ + cos(χ+ φ)]

|ǫ|2[cosh τ − cos(χ+ φ)]2
Θ(2[cosh τ − cos (χ+ φ)]|ǫ|2 − 4|µ̂|2) dφ dχ .

(A.14)

This has the right limit to the expression found in the singular conifold case [22] when

τ → ∞, ǫ→ 0, eτ |ǫ|2 fixed. Moreover, it is consistent with the embedding reaching the tip

of the conifold for sufficiently small mass, also in the case where the mass is non zero: the

Heaviside gives vanishing contribution for small τ only if |µ̂| is sufficiently large (compared

to |ǫ|). In general, the Heaviside fixes the absolute minimal value of τ to be given by

cosh τq = −1 + (2|µ̂|2/|ǫ|2) in agreement with the considerations in the previous sections.

Let us solve the integral above. First of all, let us redefine

x = cosh τ, α = χ+ φ, γ = χ− φ , (A.15)

such that xq ≡ 2µ2 − 1. Notice also that |detJ | = 1/2, where J is the Jacobian associated

to the angular change of variables above. Notice also that requiring

∫ 4π

0

∫ 2π

0
dχ dφ =

1

2

∫ mπ

0

∫ nπ

0
dα dγ , (A.16)
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implies mn = 16. Hence, let us choose m = n = 4 i.e. [0, 4π] as a range for both α and

γ. Integration over γ is trivial. From a comparison of (A.14) with Ωτψ as expected by

symmetry arguments (cfr. eq. (2.11)) we thus arrive at the following integro-differential

equation

dNf (x)

dx
=
Nfµ

2

2π

∫ 4π

0

(x+ cosα)

(x− cosα)2
√
x2 − 1

Θ[x− cosα− 2µ2] dα . (A.17)

In the massless case µ = 0 [11] one simply has Nf (τ) = const = Nf . Notice that if x >

2µ2 +1, the condition imposed by the Heaviside is valid for every α and the calculation gets

simpler (we can just erase the Heaviside in the integral). The difficult piece of calculation

is in the region 2µ2 − 1 < x < 2µ2 + 1. After performing the integral in α we get the first

order equation (2.13). Solving this equation we get the effective running number of flavors

Nf (τ) discussed in section 2.2.

The above results have been cross-checked performing numerically the integration in

eq. (2.10), also considering other components of the density distribution form and no con-

tradiction with the maximally symmetric expression for Ω (in particular the expected ψ

independence of its components) was found.

B The holomorphic embeddings on the “backreacted” conifold

All along the paper we have shown that the (Einstein frame) metric ansatz for the back-

reacted background has a standard warped (3, 1) × 6 form. The 6d transverse space is a

“flavor-deformation”, driven by some functions of the radial coordinate, of the deformed

conifold metric. If in the standard (deformed) conifold case the κ-symmetric embedding

equations for the D7-branes can be simply written as holomorphic expressions in the zi,

we have to ask what happens in the backreacted case. The answer to this question is sim-

ple, since it can be shown that our backreacted 6d metric is an SU(3) structure metric on

the deformed conifold. Hence the embedding equations for the D7-branes can be written

in the same way as in the unflavored case, modulo, eventually, a difference in the radial

coordinate.

To see which coordinate to choose, let us write the deformed conifold as in [47]

detW = −ǫ
2

2
, (B.1)

where W = wiσ
i+w4 and σi are the Pauli matrices. The radial coordinate u of the conifold

can be defined as

u2 = Tr(W W+) . (B.2)

It is related to the standard deformed conifold coordinate τDC , by u2 = |ǫ|2 cosh τDC . The

family of Kähler metrics on the deformed conifold is given in [47] and reads

ds26DC =

[

K ′′

(

1 − |ǫ|4
u4

)

u4 +K ′u2

]





du2

u2
(

1 − |ǫ|4

u4

) +
1

4
(g5)2



+ . . . , (B.3)
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where we write only the terms which are relevant for the present analysis. Now, our

backreacted 6d metric reads

ds26 fDC =
1

9
e2G3(τ)(dτ2 + g2

5) + . . . , (B.4)

and thus requiring it belongs to the family (B.3) we get

1

9
e2G3 =

1

4

[

K ′′

(

1 − |ǫ|4
u4

)

u4 +K ′u2

]

,

1

9
e2G3dτ2 =

[

K ′′

(

1 − |ǫ|4
u4

)

u4 +K ′u2

]

du2

u2
(

1 − |ǫ|4

u4

) . (B.5)

These conditions can be fulfilled if

dτ2 = 4
du2

u2
(

1 − |ǫ|4

u4

) → τ = log
[

u2 +
√

u4 − |ǫ|4
]

+ const , (B.6)

which is nothing more than

u2 = |ǫ|2 cosh τ , (B.7)

if we choose the (irrelevant) “const” above to be: const = − log |ǫ|2. From this we see that

the explicit expression for the D7 embeddings on the backreacted 6d manifold is exactly

the same as those on the standard deformed conifold: τ = τDC .

C The smeared D7-brane action

Let us now see which form is taken by the action for the flavor D7-branes in case we

homogeneously smear them. The action is taken as the sum of DBI and WZ terms. Let us

start with the latter, which are simpler.

C.1 The WZ term

Assuming that the three-form fluxes have only components along the internal directions,

the WZ term is

SWZ = TD7

∑

Nf

∫

M8

[

Ĉ8 + B̂2 ∧ Ĉ6 +
1

2
B̂2 ∧ B̂2 ∧ Ĉ4

]

, (C.1)

where M8 is the eight-dimensional worldvolume of the D7-branes, B̂2 denotes the pull-

back to M8 of the NSNS two-form B2 and Ĉ8, Ĉ6 and Ĉ4 denote the pullbacks of the

corresponding RR potentials of type IIB supergravity.

Let us now define the two-form Ω as the Poincare dual of M8, which for any eight-form

A8 satisfies
∑

Nf

∫

M8

Â8 =

∫

M10

Ω ∧A8 . (C.2)
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In terms of Ω, we can rewrite the WZ action of the D7-branes as

Ssmeared
WZ = TD7

∫

M10

Ω ∧
[

C8 + B2 ∧C6 +
1

2
B2 ∧B2 ∧ C4

]

. (C.3)

It is clear from (C.3) that Ω determines the RR charge of the D7-branes. Notice that the

wedge product of any form with Ω naturally implements its pullback to the worldvolume

M8. Moreover, it is clear from (C.3) that Ω acts as a magnetic source for the RR field

strengths F1, F3 and F5. Indeed, the equations of motion of C8, C6 and C4 give rise to the

modifications of the Bianchi identities for F1, F3 and F5 as given in section 3.1.

C.2 The smeared κ-symmetry condition

Let us rewrite the Einstein frame metric ansatz used in the paper, in terms of another

radial coordinate r, related to τ by 3e−G3dr = dτ

ds2 =
[

h(r)
]− 1

2
dx2

1,3 +
[

h(r)
]

1
2
ds26 ,

ds26 = dr2 + e2G1(σ2
1 + σ2

2) + e2G2

[

(ω1 + g σ1)
2 + (ω2 + g σ2)

2

]

+
e2G3

9
(ω3 + σ3)

2 .(C.4)

Let us now introduce the following tangent space basis

ex
µ

= h−1/4 dxµ µ = 0, . . . , 3 , er = h1/4dr ,

e1 = h1/4eG1σ1 , e2 = h1/4eG1σ2 ,

e1̂ = h1/4eG2(ω1 + gσ1) , e2̂ = h1/4eG2(ω2 + gσ2) ,

e3̂ = h1/4 e
G3

3
(ω3 + σ3) . (C.5)

In this basis, the Killing spinors ǫ of the background can be written as

ǫ = e
α
2
Γ11̂h−1/8η , (C.6)

where α is an angle such that tanα = −geG2−G1 and η is a constant spinor satisfying the

following projection conditions

Γx0x1x2x3 (iσ2) η = η , −Γ12 (iσ2) η = Γ1̂2̂ (iσ2) η = η . (C.7)

In (C.7) we have employed a double spinor notation for η. Notice that these algebraic

conditions determine four independent spinors, which implies that our configurations are

1/8 supersymmetric.

The Kähler form J of the backreacted deformed conifold is the two-form whose com-

ponents are the fermion bilinears Jµν = h
1
4 ǭ (−iσ2) Γµν ǫ, where µ, ν are indices along
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the internal directions and ǫ is a Killing spinor normalized as ǭǫ = h−
1
4 . By using (C.6)

and (C.7), the Kähler form of the transverse 6d manifold can be written as

h−
1
2J = eG1+G2

(

g1 ∧ g4 − g2 ∧ g3
)

− eG3

3
dr ∧ g5 . (C.8)

Making use of the equation 3(G′
1 + G′

2) = eG3−G1−G2, which is a consequence of the BPS

system (E.2), one can check that h−
1
2J is closed

d
(

h−
1
2J
)

= 0 . (C.9)

The κ-symmetry condition for the localized non-chiral embedding is [30]

Ĵ ∧ B̂2 = 0 . (C.10)

The smeared version of this condition is

Ω ∧ J ∧B2 = 0 , (C.11)

where Ω is the D7-brane density distribution form. One can verify that, indeed, this

equation is satisfied by our ansatz for B2 and the Kähler form.

C.3 The DBI term

For zero worldvolume gauge fields the Einstein frame DBI term for the D7-branes can be

written, in the localized case, as

SDBI = −TD7

∑

Nf

∫

M8

d8ξ eφ
√

− det
(

Ĝ8 + e−
φ
2 B̂2

)

, (C.12)

where the ξ’s are coordinates that parameterize the eight-dimensional worldvolume M8 of

the D7-branes and Ĝ8 denotes the pullback to M8 of the ten-dimensional metric G. For

a background metric with standard warped form, as the one used in this paper, we can

rewrite the above expression as

SDBI = −TD7

∑

Nf

∫

M8

d4x d4ζ eφ h−1

√

det
(

Ĝ4 + e−
φ
2 B̂2

)

, (C.13)

where ζi (i = 1, · · · 4) are the coordinates of the four-cycle wrapped by the branes.

The DBI action for the smeared branes takes a remarkably simple form due to the

calibration condition on the wrapped cycles. This condition allows us to rewrite (see eq.

(B.10) in [14])
√

det
(

Ĝ4 + e−
φ
2 B̂2

)

d4ζ =
1

2

(

Ĵ ∧ Ĵ − e−φ B̂2 ∧ B̂2

)

. (C.14)

Using this result in (C.13), we get

SDBI = −TD7

2

∑

Nf

∫

M8

d4xh−1
(

eφ Ĵ ∧ Ĵ − B̂2 ∧ B̂2

)

. (C.15)

Following the standard rule, the smeared version of this action is

Ssmeared
DBI = − TD7

2

∫

M10

d4xΩ ∧ Vol(M1,3) ∧
(

eφ J ∧ J − B2 ∧B2

)

. (C.16)
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D Matching with the massless case

As we have shown in section 2.2, when the flavor mass vanishes, Nf (τ) = Nf . In this case

the integral defining η(τ) in (3.18) can be done explicitly and one can verify that K(τ) is

given by

K(τ) =
Λ(τ)

4
1
3 (τ0 − τ)

1
3

, (D.1)

where Λ(τ) is the function defined in [11], namely

Λ(τ) =

[

2(τ − τ0)(τ − sinh 2τ) + cosh(2τ) − 2ττ0 − 1
]

1
3

sinh τ
. (D.2)

Moreover, if we define the new constant ǫ̂ as

ǫ̂
4
3 =

( Nf

16π

)
1
3
ǫ

4
3 , (D.3)

one can verify that the functions G1, G2 and G3 reduce in this case to:

e2G1 =
1

4
ǫ̂

4
3

sinh2 τ

cosh τ
Λ(τ) ,

e2G2 =
1

4
ǫ̂

4
3 cosh τ Λ(τ) ,

e2G3 = 6 ǫ̂
4
3

τ0 − τ
[

Λ(τ)
]2 , (D.4)

which, indeed, are the values found in [11].

E The second order equations and consistency checks

We verify below that the second order equations of motion for the dilaton, the graviton

and the various forms are a consequence of the first-order BPS equations. Let us rewrite

them using the r variable introduced in appendix C. For the warp factor the equation is

h′ e2G1+2G2+G3 = −3

4
α′2M2

[

f − (f − k)F +
Nf

4π
fk
]

+ N0 , (E.1)

where N0 is the integration constant we have put to zero in the paper. For the other metric

functions we have

G′
1 − 1

6
eG3−G1−G2 − 3

2
eG2−G1−G3 +

3

2
eG1−G2−G3 = 0 ,

G′
2 − 1

6
eG3−G1−G2 +

3

2
eG2−G1−G3 − 3

2
eG1−G2−G3 = 0 ,

G′
3 +

1

3
eG3−G1−G2 − 3 eG2−G1−G3 +

3Nf

8π
eφ−G3 = 0 , (E.2)

– 35 –



J
H
E
P
0
3
(
2
0
0
9
)
1
5
3

and, for the dilaton

φ′ =
3Nf

4π
eφ−G3 . (E.3)

The BPS equations for the functions k, f and F of the three-forms are

k′ = 3eφ−G3

(

F +
Nf

4π
f

)

1 + g

1 − g
,

f ′ = 3eφ−G3

(

1 − F +
Nf

4π
k

)

1 − g

1 + g
,

F ′ =
3

2
e−φ−G3(k − f) . (E.4)

It is also interesting to recall that, in the deformed conifold case, the fibering function g is

related to the metric functions G1 and G2 as

g2 = 1 − e2(G1−G2) . (E.5)

The equations written above are a consequence of the requirement of supersymmetry. The

corresponding Killing spinors have been written in appendix C.

E.1 The second order equations for dilaton and forms

The second order equations of motion for the dilaton and the forms in a setup like the one

considered in the paper are (see also [11, 14])

1√
−G

∂M

(

GMN
√
−G∂N φ

)

= e2φ F 2
1 +

1

12

(

eφF 2
3 − e−φH2

3

)

− 2κ2
10√
−G

δ

δφ
Ssmeared
DBI ,

d
(

e2φ ∗ F1

)

= −eφH3 ∧ ∗F3 − 1

24
B2 ∧B2 ∧B2 ∧B2 ∧ Ω ,

d
(

eφ ∗ F3

)

= −H3 ∧ F5 +
1

6
B2 ∧B2 ∧B2 ∧ Ω ,

d
(

eφ ∗H3

)

= eφ F1 ∧ ∗F3 − F5 ∧ F3 + Vol(M1,3) ∧B2 ∧ Ω , (E.6)

where Vol(M1,3) is the Minkowski part of the volume element of M10 (for our ansatz

Vol(M1,3) = h−1d4x). In (E.6) we have not included the F5 equation of motion since it

coincides with the F5 Bianchi identity which is solved provided the warp factor satisfies

the first order equation (E.1).

It is possible to show that the solutions of the first order BPS equations solve the above

equations of motion. The following hints can be useful in the proof.

As for the dilaton e.o.m. notice that

eφF 2
3 − e−φH2

3 = 0 , (E.7)

which is actually a consequence of the fact that, as expected from supersymmetry, the

complex three-form G3 = F(3) + ie−φH is imaginary self-dual in the internal manifold.

Moreover, it is evident from Ssmeared
DBI that the B2 field does not contribute to the equation

of motion of the dilaton.
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As for the equations for the forms F1 and F3 notice that in our setup

B2 ∧B2 ∧B2 ∧B2 = 0 , B2 ∧B2 ∧B2 = 0 . (E.8)

One can check that the equation for F1 in (E.6) is satisfied identically, as in the massless

case. Moreover, but much less trivially, the equation for F3 and H3 are satisfied too due

to the first order BPS equations.

E.2 Einstein equations

The Einstein equations for our system are

RMN − 1

2
GMNR =

1

2

(

∂Mφ∂Nφ− 1

2
GMN∂Pφ∂

Pφ
)

+
1

2
e2φ
(

F
(1)
M F

(1)
N − 1

2
GMNF

2
1

)

+

+
1

96
F

(5)
MPQRSF

(5)PQRS
N +

1

12
eφ
(

3F
(3)
MPQ F

(3)
N

PQ − 1

2
GMN F

2
3

)

+

+
1

12
e−φ

(

3H
(3)
MPQH

(3)PQ
N − 1

2
GMN H

2
3

)

+ TMN , (E.9)

where TMN is the DBI contribution to the energy-momentum tensor, namely

TMN = − 2κ2
10√
−G

δSsmeared
DBI

δGMN
. (E.10)

In order to check the fulfillment of (E.9) it is essential to calculate the different components

of TMN . We will compute them by performing explicitly the derivative of the smeared DBI

action (C.16) with respect to the metric GMN . Let us first consider the case in which M

and N in (E.10) are indices along the Minkowski directions. In this case, the dependence of

Ssmeared
DBI on Gx

µxν
comes from the Vol(M1,3) volume form. The corresponding derivative is

straightforward to compute and the result in flat components with respect to the basis (C.5)

is

Txµ xν d6η = − 1

4h
√
−G ηµν e

φ Ω ∧
[

J ∧ J − e−φB2 ∧B2

]

, (E.11)

where the η’s are the coordinates of the transverse 6d manifold. By using the explicit

expressions of Ω and J (eq. (C.8)), as well as our ansatz for B2 (eq. (3.2)), one can easily

compute the wedge product of forms appearing on the right-hand side of (E.11). One gets

Txµ xν = −
[

Nf

4π
h−

1
2 eφ−G1−G2 +

3N ′
f

8π
h−

1
2 eφ−G3 +

3α′2M2N ′
f

32π
h−

3
2 e−2G1−2G2−G3 k f

]

ηµν .

(E.12)

Let us now obtain the components of TMN along the internal manifold. Clearly, the only

dependence of the right-hand side of (C.16) on the metric of 6d manifold comes from the

Kähler form J . Then, if µ, ν are coordinate indices along the internal manifold and if Eµa
are the coefficients of the corresponding inverse vierbein, one has16

Tab d
6η =

eφ

2h
√
−G Ω ∧ Eµa Eνb

δ

δGµν

[

J ∧ J
]

= − eφ

2h
√
−G Ω ∧ eb ∧ ιea

[

J
]

∧ J , (E.15)

16Let A(p) be an arbitrary p-form which, in the basis of the frame one-forms ea, can be written as

A(p) =
1

p!
A(p)

a1···ap
ea1 ∧ · · · eap . (E.13)
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where a, b are flat indices and ea, eb are frame one-forms along the 6d directions. In a one-

form basis in which J has the canonical form J = e1∧e2+e3∧e4+e5∧e6 it is straightforward

to verify that the non-diagonal terms eb ∧ ιea

[

J ], for a 6= b, vanish. Actually, Tab has the

following diagonal form

Tab d
6η = − eφ

4h
√
−G Ω ∧ (J ∧ J)ea δab , (E.16)

where (J ∧ J)ea is the part of J ∧ J containing the one-form ea. It is clear from (C.8) that

one can construct a basis in which J has the canonical form by rescaling appropriately the

forms g1, · · · , g5 and dr. After computing the wedge products of the different components

of J ∧ J with Ω, one gets

Ω ∧ (J ∧ J)r = Ω ∧ (J ∧ J)g5 =
h

1
2

√
−G
π

e−G1−G2 Nf d
6η ,

Ω ∧ (J ∧ J)gi =
h

1
2

√
−G

2π

[

Nf e
−G1−G2 + 3N ′

f e
−G3

]

d6η , (i = 1, · · · 4) . (E.17)

It is now straightforward to obtain the remaining components of T in the basis (C.5),

namely

Trr = T3̂3̂ = −Nf

4π
h−

1
2 eφ−G1−G2 ,

Tab = Tâb̂ = −Nf

8π
h−

1
2 eφ−G1−G2 −

3N ′
f

8π
h−

1
2 eφ−G3 , (a, b = 1, 2) . (E.18)

It is quite non trivial to show, using the previous ingredients, that the solutions of the BPS

equations also satisfy the Einstein equations of motion. In this verification, the following

remarkable identity satisfied by the three-forms of our ansatz

eφ F
(3)
MPQ F

(3)
N

PQ + e−φH
(3)
MPQH

(3)
N

PQ =
1

3
e−φH2

3 δMN ,

M,N = r, 1, 2, 1̂, 2̂, 3̂ , (E.19)

is quite useful.

F The string breaking length

As it was observed in [17, 18], due to the smearing, a generic decay Q̄Q → Q̄q + q̄Q

is suppressed as 1/Nc (1/M in our case). To get a decay rate which is not strongly

suppressed we can consider the possibility of producing a large number of heavy-light

mesons up to some reference ones. The latter are, arbitrarily, chosen as the mesons whose

“dynamical” quarks have the same internal charges as the static ones. The string picture of

Then, we define ιea

ˆ

A(p)] as the following (p − 1)-form

ιea

ˆ

A(p)] =
1

(p − 1)!
A(p)

aa2···ap
ea2 ∧ · · · eap . (E.14)
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Figure 12. The string breaking length for constant glueball scale h0. In the first plot MQ = 50

and the two almost coincident lines correspond to mq = 1 and µ2 = 0.125. In the second plot

Nf = 1 and the two almost coincident lines correspond to mq = 1 and µ2 = 0.125. In the third and

fourth plot MQ = 50 and Nf = 1.

Figure 13. The string breaking length for constant string tension T . In the first plot MQ = 50

and the higher (lower) line corresponds to mq = 1 (µ2 = 0.125). In the second plot Nf = 1 and

the higher (lower) line corresponds to mq = 1 (µ2 = 0.125). In the third and fourth plots MQ = 50

and Nf = 1.

the lowest energy configuration for one of these heavy-light mesons is in terms of a straight

string stretching from the probe Q brane to a dynamical, parallel, q brane. Choosing the

dynamical flavor brane as the one having the minimal possible distance τmin = τq from the

origin, we get that the energy of the string, and so the mass of the corresponding meson,

is thus given by MQ −mq. The minimal separation at which a pair of such mesons can be

produced is called “string breaking length” Lsb, and in the present setup17 it is defined as

V (Lsb) =

{

−2mq , µ > 1 ,

0 , µ < 1 .
(F.1)

The behavior of Lsb as a function of the flavor parameters is shown in figures 12 (constant

glueball scale) and 13 (constant string tension), for the two “Possibilities” discussed in

section 4.1.

The behavior of the string breaking length Lsb is similar to the behavior of the screening

length Ls, apart from its dependence on mq, due to the presence of the latter in the defining

relation (F.1). In fact, the string breaking length Lsb is a monotonically increasing function

of Nf if the glueball scale is kept fixed (figure 12, first plot), while it is monotonically

decreasing if it is the string tension to be kept fixed (figure 13, first plot). In both cases,

Lsb is monotonically increasing with the static quark mass MQ (figures 12, 13, second plots)

and with the dynamical flavor mass µ in the regime µ < 1 (figures 12, 13, third plots). For

µ > 1, Lsb is monotonically decreasing with µ in the constant glueball scale case (figure 12,

fourth plot). In the constant string tension case, instead, Lsb has a very peculiar behavior,

17For previous studies of Lsb in a quenched D3-D7 N = 2 setup, see [48].
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displaying both a local minimum for small mq and a local maximum for intermediate values

of mq (figure 13, fourth plot).18 Let us stress again that, due to the explicit presence of mq

in (F.1) for µ > 1, the behavior of Lsb in the latter regime needs not to be continuously

connected to that in the µ < 1 regime.
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[13] R. Casero, C. Núñez and A. Paredes, Elaborations on the String Dual to N = 1 SQCD,

Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421] [SPIRES].

[14] F. Benini, A chiral cascade via backreacting D7-branes with flux, JHEP 10 (2008) 051

[arXiv:0710.0374] [SPIRES].

[15] E. Caceres, R. Flauger, M. Ihl and T. Wrase, New Supergravity Backgrounds Dual to N = 1

SQCD-like Theories with Nf = 2Nc, JHEP 03 (2008) 020 [arXiv:0711.4878] [SPIRES].

[16] F. Canoura, P. Merlatti and A.V. Ramallo, The supergravity dual of 3d supersymmetric

gauge theories with unquenched flavors, JHEP 05 (2008) 011 [arXiv:0803.1475] [SPIRES].
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